Chapter 1

Sample Pretest

Part I: SCIENTIFIC CALCULATOR REQUIRED

1. [6 points] Compute each number rounded to 3 decimal places. Please double check your answer.

 \begin{align*}
 (a) \quad & \frac{\sqrt{2} + 3}{\pi} \\
 (b) \quad & \sqrt{\frac{\pi^2 + 7}{1.3 + \sqrt{7}}} \\

 \text{Answers}
 \end{align*}

Part II: NO CALCULATORS!

2. [3 points] Write each number as a decimal.

 \begin{align*}
 (a) \quad & 2.1 \times 10^4 \\
 (b) \quad & 3.26 \times 10^{-5} \\
 (c) \quad & 1 \times 10^{-2} \\

 \text{Answers}
 \end{align*}

3. [3 points] Write each number in scientific notation.

 \begin{align*}
 (a) \quad & 9582 \\
 (b) \quad & 1.245 \\
 (c) \quad & .000561 \\

 \text{Answers}
 \end{align*}

4. [3 points] Compute the following. Simplify.

 \begin{align*}
 (a) \quad & -\frac{3}{4} - \frac{5}{12} \\
 (b) \quad & \sqrt[3]{-|4^2 - 2^3|} \\
 (c) \quad & \left(\frac{8}{27}\right)^{-2/3} \\

 \text{Answers}
 \end{align*}
CHAPTER 1. SAMPLE PRETEST

5. [10 points] Simplify each expression so that all the exponents are positive.
 (a) $h \frac{g^3 h^{-2}}{q^2 g h^3}$
 (b) $\frac{a^{-1} + b^{-1}}{a^{-1} - b^{-1}}$

6. [10 points] Rewrite each expression as a polynomial in standard form.
 (a) $(x - 2)^2(x + 2)$
 (b) $2(x + 7) - (2x - 3)^2$

7. [10 points] Factor over the reals.
 (a) $x^2 - 9x + 14$
 (b) $x^4 - 7x^2 + 12$

8. [10 points] Perform the indicated operations and simplify the result as much as possible. (Assume $x \neq 1$ or 2.)
 $$\frac{x + 1}{x - 1} + \frac{2x}{x - 2}$$

9. [15 points] Divide: $\frac{x^4 - 3x^3 + 2x^2 - x + 4}{x^2 + 3}$

10. [10 points] A right triangle has hypotenuse of length 10 feet and one leg in known to be 6 feet. What is the length of the other leg? What is the triangle’s area?

11. [10 points] An isosceles triangle has two legs of length 6 inches and one of length 4 inches. Find the triangle’s area. Hint: draw a picture.

12. [10 points] Construct a formula for the area A of a circle in terms its circumference C. Hint: you should know the formulas for A and C in terms of the radius R.

Answers
1.1 Answers

1. (a) 0.657 (b) 2.068

2. (a) 21,000 (b) 0.0000326 (c) 0.01

3. (a) 9.582×10^3 (b) 1.245 (c) 5.61×10^{-4}

4. (a) $-\frac{7}{6}$ (b) -2 (c) $\frac{9}{4}$

5. (a) $\frac{g^2}{q^2 h^4}$ (b) $\frac{b + a}{b - a}$

6. (a) $x^3 - 2x^2 - 4x + 8$ (b) $-4x^2 + 14x + 5$

7. (a) $(x - 7)(x - 2)$ (b) $(x + \sqrt{3})(x - \sqrt{3})(x + 2)(x - 2)$

8. $\frac{3x^2 - 3x - 2}{x^2 - 3x + 2}$

9. Quotient = $x^2 - 3x - 1$. Remainder = $8x + 7$.

10. Leg = 8 feet. Area = 24 square feet.

11. Area = $4\sqrt{5}$ square inches.

12. $A = \frac{C^2}{4\pi}$.
Chapter 2

Practice Finals

No final exam can cover every single course objective. The practice finals given here are meant to give the student a general sense of the format and level of difficulty of a typical final exam. Studying these may be helpful but is in no way a substitute for studying your homeworks, class tests and quizzes. Just because a certain type of problem does not appear on either of these practice finals does not mean it will not be on your final exam.

2.1 Practice Final 1

1. [20 points; 4 points each]
 a) Simplify the following completely; express your answer using only positive exponents.
 \[
 \left(\frac{27x^{-6}}{1000y^{-9}} \right)^{2/3}
 \]
 b) Factor over the reals: \(2x^4 - 7x^2 - 4\).
 c) Solve for \(x\): \(\frac{3x - 4}{x} = 2\).
 d) Solve for \(x\): \(\log_2 3x = 4\).
 e) Find the equation of the line going through (2,3) and (−1,2), in slope-intercept form.

Answers
2. [20 points; 5 points each]

 a) Find all real or complex values of \(x \) that solve, \(\frac{1 - 3x}{4} = \frac{3}{1 + 3x} \).

 b) Find the equation, in standard form, of the circle passing through (0, 1) with center (2, −1).

 c) Solve \(|2x - 3| > 5\). Write your answer in interval notation.

 d) Compute \(\log_7 5 \), rounded to 5 decimal places.

 Answers

3. [20 points; 10 points each]

 a) Let \(g(x) = x^3 + 1 \). Graph \(y = g(x) \). b) Graph \(y = g^{-1}(x) \) on the same grid. Label the intercepts on both graphs.

 Answers

4. [20 points; 10 points each]

 a) Sketch the graph of \(y = \ln(x - 3) \). [6 points] Label the intercepts and asymptotes. [4 points]

 b) Graph \(y = x^2 - 6x + 8 \). [5 points] Label all of the following: the intercepts, the vertex, and the axis of symmetry. [5 points]

 Answers

5. [20 points; 10 points each]

 a) List the potential rational zeros of \(6x^2 + 7x - 3 \), according to the Rational Zeros Theorem. [5 points] Factor \(6x^2 + 7x - 3 \). [5 points]

 b) Factor \(2x^3 + x^2 - 5x + 2 \).

 Answers

6. [20 points; 10 points each]

 a) Solve for \(x \) where \(8^{2x-6} = 4^{x+1} \).

 b) Solve for \(x \) where \(\log_3(x^2 + x) - \log_3(x^2 - x) = 1 \).

 Answers
7. [20 points] Let \(f(x) = \frac{x}{x^2 - 4} \).

 a) [2 points] State the domain of \(f \):

 b) [3 points] Is \(f \) even, odd or neither?

 c) [3 points] Find all the asymptotes for the graph of \(y = f(x) \).

 d) [2 points] Find all the intercepts for the graph of \(y = f(x) \).

 e) [10 points] Sketch the graph labeling the intercepts and asymptotes.

8. [20 points; 10 points each]

 a) Find a 6 degree polynomial function \(f(x) \) with real coefficients that has one zero at \(x = 0 \) with multiplicity 4, and a complex zero at \(x = 2 - i \). Express your answer in standard form.

 b) Find the equation of the parabola below, expressed in standard form.

 ![Parabola Diagram]

9. [20 points] Suppose you have 20 liters of a solution that is 30% isopropyl alcohol. How many liters of 80% alcohol would you have to add to get a solution that is 50% alcohol?
10. [20 points] A wire 10 meters long is to be cut into two pieces. Say the first piece has length a and the second length b. Clearly $a + b = 10$. The first piece will be shaped into a square, the second into a circle.

![Diagram of wire cut into two pieces, one shaped into a square and the other into a circle]

a) [4 points] Find the area of the square as a function of a.

b) [6 points] Find the area of the circle as a function of b.

c) [2 points] Now find the area of the circle as a function of a; remember $a + b = 10$.

d) [4 points] Now find a formula for the total enclosed area in terms of a. Simplify it.

e) [4 points] This function should be a quadratic. For what value of a is it a minimum?

Answers
2.2. Answers and Hints

1. [20 points; 4 points each]
 a) \(\frac{9y^6}{100x^4} \)
 b) \((2x^2 + 1)(x - 2)(x + 2)\)
 c) \(x = 4\).
 d) \(x = 16/3\)
 e) \(y = x/3 + 7/3\).

2. [20 points; 5 points each]
 a) \(\pm i\sqrt{11}/3\).
 b) \((x - 2)^2 + (y + 1)^2 = 8\).
 c) \((-\infty, -1) \cup (4, \infty)\)
 d) 0.82709

3. [20 points; 10 points each]
4. [20 points; 10 points each]
 a) \(y = \ln(x - 3) \)

 \[x=3 \]

 \((4,0) \)

 b) \(y = x^2 - 6x + 8 \).

 \[(4,0) \] \((2,0) \) \((3,-1) \) \((0,8) \)

5. [20 points; 10 points each]
 a) \(\pm 1, \pm 3, \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{1}{9} \). \(6x^2 + 7x - 3 = (2x + 3)(3x - 1) \) or \(6(x + \frac{3}{2})(x - \frac{1}{3}) \).
 b) \(2x^3 + x^2 - 5x + 2 = (2x - 1)(x + 2)(x - 1) \).
6. [20 points; 10 points each]
 a) \(x = 5 \)
 b) \(x = 2 \). (\(x = 0 \) is invalid.)

7. [20 points] Let \(f(x) = \frac{x}{x^2 - 4} \)
 a) [2 points] All real numbers except 2 and \(-2\), or \((-\infty, -2) \cup (-2, 2) \cup (2, \infty)\).
 b) [3 points] Odd.
 c) [3 points] Vertical: \(x = 2, x = -2 \). Horizontal: \(y = 0 \) (i.e., the \(x \)-axis).
 d) [2 points] \((0, 0)\) is the only intercept.
 e) [10 points] Sketch the graph labeling the intercepts and asymptotes.

8. [20 points; 10 points each]
 a) \(x^6 - 4x^5 + 5x^4 \)
 b) \(-\frac{1}{10}x^2 + 10\).
9. [20 points] Set up the equation $20(0.3) + x(0.8) = (20 + x)(0.5)$. Thus, $x = 6\frac{2}{3}$.

Return to Problem

10. [20 points]
 a) [4 points] $A_S = \frac{a^2}{16}$
 b) [6 points] $A_C = \frac{b^2}{4\pi}$
 c) [2 points] $A_C = \frac{(10 - a)^2}{4\pi}$
 d) [4 points] $A = A_S + A_C = \left(\frac{1}{16} + \frac{1}{4\pi}\right)a^2 - \frac{5}{\pi}a + \frac{25}{\pi}$
 e) [4 points] $a_{\text{min}} = \frac{40}{\pi + 4}$

Return to Problem

2.3 Practice Final 2

1. [20 points; 4 points each]
 a) Simplify the following completely; express your answer using only positive exponents. (Assume both x and y are positive.)
 $\left(\frac{x^3y^9}{8\sqrt{x^{12}y^{-6}}}\right)^{-1/3}$
 b) Solve for t in the equation $A = A_0e^{rt}$.
 c) Rationalize the denominator of $\frac{x}{\sqrt{x} - \sqrt{2}}$.
 d) A right triangle has area 3 and one leg of length 2. What is the length of its hypotenuse?
 e) Multiply: $(5 + 3i)(2 - i)$; express your answer in the form $a + bi$, where a and b are real numbers.

Answers
2. [20 points; 5 points each]
 a) Find the equation of the line going through (2, 3) and perpendicular to the line given by $y = 3x + 2$, in slope-intercept form.
 b) Solve for x in the equation $3^x = 11$. Round your answer to five decimal places.
 c) Divide: $\frac{2 + 3i}{1 - i}$; express your answer in the form $a + bi$, where a and b are real numbers.
 d) Let $f(x) = 17 + \ln x^3$. Find $f^{-1}(20)$.

3. [20 points] The equation of a circle in general form is $x^2 + y^2 + 8x - 6y + 8 = 0$.
 a) [10 points] Put the equation into standard form.
 b) [4 points] What are the center and radius of the circle?
 c) [6 points] Graph the circle.

4. [20 points; 10 points each]
 a) Let $f(x) = x^3 + x^2 - 4x + 6$. Factor $f(x)$ over the complex numbers. Hint: check that $f(-3) = 0$.
 b) Find a 4 degree polynomial function $f(x)$ with real coefficients that has complex zeros at $x = 3 - 2i$ and $x = 2 + i$. Express your answer in standard form.

5. [20 points; 10 points each]
 a) Find all real values of x such that $x^2 - x = 1$.
 b) Find all real values of x such that $e^{2x} - e^x = 1$.
6. [20 points; 10 points each]
 a) Solve the inequity \(\frac{x + 1}{2x - 3} \geq 0 \); express your answer using interval notation.
 b) Solve the inequity \(\frac{x + 1}{2x - 3} \geq 1 \); express your answer using interval notation.

Answers

7. [20 points] Let \(f(x) = x^2 + 1 \).
 a) [5 points] Graph \(y = f(x) \).
 b) [10 points] Find a formula for the slope of the line segment joining \((2, f(2))\) with \((2 + h, f(2 + h))\) in terms of \(h\); simplify it.
 c) [5 points] What value does the slope approach when \(h\) tends toward 0?

Answers

8. [20 points] The weight of a colony of bacteria at time \(t\) in hours obeys the equation \(B(t) = B_0 e^{kt} \). The colony has an initial weight of 15 grams. In 10 hours the weight increased to 20 grams.
 a) [10 points] Find \(k\). (Round your answer to six decimal places.)
 b) [10 points] How long will it take for the colony to double its weight? (Express your answer in hours and minutes, rounded to the nearest minute.)

Answers

9. [20 points] Let \(f(x) = \frac{x + 1}{x^2 + 2x - 3} \).
 a) [2 points] State the domain of \(f\):
 b) [3 points] Is \(f\) even, odd or neither?
 c) [3 points] Find all the asymptotes for the graph of \(y = f(x)\).
 d) [2 points] Find all the intercepts for the graph of \(y = f(x)\).
 e) [10 points] Sketch the graph labeling the intercepts and asymptotes.

Answers
10. [20 points; 10 points each] A gardener has 240 feet of fencing to enclose two adjacent rectangular growing areas as pictured. Both rectangles are to have the same dimensions.

a) Express the total growing area as a function of \(x \).

b) What dimensions should be used so that the maximum growing area will be enclosed? (You must find both \(x \) and \(y \).)

2.4 Answers and Hints

1. [20 points]
 a) \(\frac{2x}{y^2} \)
 b) \(t = \frac{\ln(A/A_0)}{r} \)
 c) \(\frac{x(\sqrt{x} + \sqrt{2})}{x^2 - 2} \)
 d) \(\sqrt{13} \)
 e) 13 + 1i, but 13 + i is acceptable, even preferable.
2. [20 points]
 a) \(y = -\frac{1}{3}x + 3\frac{2}{3} \)
 b) \(x = \frac{\log 11}{\log 3} \approx 2.18266 \)
 c) \(-\frac{3}{2} + \frac{5}{2}i \)
 d) \(f^{-1}(20) = e \).

3. [20 points]
 a) \((x + 4)^2 + (y - 3)^2 = 17\)
 b) Center = \((-4, 3)\). Radius = \(\sqrt{17}\).
 c) Easy.

4. [20 points]
 a) \((x + 3)(x - (1 - i))(x - (1 + i))\)
 b) \((x^2 - 6x + 13)(x^2 - 4x + 5) = x^4 - 10x^3 + 42x^2 - 82x + 65\)

5. [20 points]
 a) \(\frac{1 \pm \sqrt{5}}{2}\)
 b) \(\ln \left(\frac{1 + \sqrt{5}}{2} \right)\). Note that \(\ln \left(\frac{1 - \sqrt{5}}{2} \right)\) is undefined (or at least is not a real number) and hence is not a valid solution.

6. [20 points]
 a) \((-\infty, -1] \cup (\frac{3}{2}, \infty)\)
 b) \((\frac{3}{2}, 4]\)
2.4. ANSWERS AND HINTS

7. [20 points]
 a) Easy.
 b) \(m(h) = 4 + h. \)
 c) \(\lim_{h \to 0} m(h) = 4. \)

8. [20 points]
 a) \(k \approx 0.028768. \)
 b) 24 hours, 6 minutes.

9. [20 points]
 a) All real numbers except \(-3\) and 1, or \((-\infty, -3) \cup (-3, 1) \cup (1, \infty).\)
 b) neither
 c) Vertical: \(x = -3 \) and \(x = 1. \) Horizontal: \(y = 0 \) (i.e., the \(x \)-axis).
 d) \((0, -\frac{1}{3}), (-1, 0). \)
 e)

10. [20 points]
 a) \(A = -3x^2/2 + 120x. \)
 b) \(x = 40 \) and \(y = 60 \) feet.