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Abstract. In this paper, we prove that the Langlands quotient may
be realized as the image of a standard intertwining operator in the con-
text of finite central extensions of connected, reductive p-adic groups. We
also verify that the duality of Aubert and Schneider-Stuhler holds in this
context.

1. Introduction

This paper is a continuation of [3].
The Langlands quotient theorem is proved in [3] for finite central exten-

sions of connected reductive p-adic groups. However, the proof is algebraic in
nature and does not bring standard intertwining operators into the picture.
As the connection with standard intertwining operators is impportant in some
contexts, we address that here. In particular, we show that the Langlands quo-
tient may be realized as the image of a standard intertwining operator. To
do so, we use the results of [10] on standard intertwining operators for finite
central extensions and properties of the Langlands quotient for such groups
established in [3].

Although not directly related to the Langlands classification, another use-
ful tool in representation theory–and which is often used in conjunction with
the Langlands classification–is the duality of Aubert and Schneider Stuhler
(see [1], [12]; also [4]). We include a sketch of the proof here, but note that it is
essentially the same as that of [1]. We also take the opportunity to remove an
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unneeded hypothesis from [3]–namely, the assumption that the characteristic
of the underlying field is zero (see Remark 2.1).

2. Notation and preliminaries

In this section, we briefly review background material and introduce no-
tation needed in the remainder of the paper. The reader is referred to [3] for
more details.

Let F be a nonarchimedean local field. Note that we make no assumption
on the characteristic of F (see Remark 2.1 below).

Let G be the group of F -points of a connected reductive group defined
over F . We call (G̃, ρ) a finite central extension of G if the following hold:

1. ρ : G̃ −→ G is a surjective homomorphism of topological groups.
2. C = ker(ρ) is a finite subgroup of Z(G̃), where Z(H) denotes the

center of H.
3. ρ is a topological covering (as described in [11]). In particular, there is

an open neighborhood O of the identity in G and a homeomorphism
j : ρ−1(O) −→ O × C such that pr1 ◦ j = ρ on ρ−1(O).

We introduce some terminology for finite central extensions. If (G̃, ρ) is
a finite central extension of G, a section of ρ is a continuous map µ : G → G̃
such that ρ ◦ µ = idG. A lifting of a subgroup H of G is a continuous
homomorphism s : H → G̃ such that ρ ◦ s = idH . Obviously, if G lifts to
G̃–in other words, if the sequence 1 −→ C −→ G̃

ρ−→ G −→ 1 splits–then
G̃ ∼= G×C. As in [3], we retain the following convention: if H be a subgroup
of G, the preimage of H in G̃ will be denoted by H̃ and a lifting of H (if it
exists) will be denoted by Ĥ. Hence, H̃ = ρ−1(H) and Ĥ ∼= H.

The group G̃ has a neighborhood basis of the identity consisting of com-
pact open subgroups, and we can define smooth and admissible representa-
tions in the standard way. We denote by R(G̃) the Grothendieck group of
the category of smooth finite length representations of G̃. Let π1 and π2 be
smooth finite length representations of G̃. If π1 and π2 have the same irre-
ducible components appearing with the same multiplicities, we write π1 = π2.
If π1 and π2 are actually equivalent as representations, we write π1

∼= π2.
Fix a maximal split torus A in G. We denote by W = W (G, A) the Weyl

group of G with respect to A. Let Φ = Φ(G, A) be the set of roots. Fix a
minimal parabolic subgroup P∅ containing A. The choice of P∅ determines
the set of simple roots S and the set of positive roots Φ+ ⊂ Φ. For I ⊂ S, we
denote by PI the standard parabolic subgroup of G determined by I and by
LI the standard Levi subgroup of PI .

Let P = MU be a parabolic subgroup of G. We call

P̃ = ρ−1(P )
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a parabolic subgroup of G̃. Let M̃ = ρ−1(M) and Û the canonical lifting of
U to G̃ described in the first appendix to [11]. Then

P̃ = M̃Û

serves as the Levi factorization. Set ÃM = ρ−1(AM ), where AM is the split
component of the center of M . The normalized parabolic induction IndG̃

P̃
and

the Jacquet functor rG̃
P̃

are defined as usual. In the case when P̃ = M̃Û is a

standard parabolic subgroup, we also denote these two functors by iG̃
M̃

and rG̃
M̃

,
respectively. We use the same notation for the corresponding homomorphisms
iG̃
M̃

: R(M̃) → R(G̃) and rG̃
M̃

: R(G̃) → R(M̃) on the Grothendieck groups.

Remark 2.1. In [3], it was assumed that the characteristic of F was zero.
This is not needed, however, for reasons detailed below.

Recall that G acts on G̃ by conjugation: g ∈ G acts on x̃ ∈ G̃ by

x̃ 7→ g̃x̃g̃−1,

where g̃ is any element of ρ−1(g). Let P = MU be a parabolic subgroup of G.
Let sU : U → G̃ be the canonical lifting described in [11], Appendix I. Then
sU is the unique P -equivariant homomorphism of U into G̃. Take a ∈ AM

and let ã be any element of ρ−1(a). Define sã : U → G̃ by

sã(x) = ã−1sU (axa−1)ã.

Since sU is P -equivariant, we have sã = sU .
The assumption of characteristic zero was made to that ensure the lifting

from U to G̃ was unique. This was used in several proofs to conclude sã = sU .
However, as observed above, one can directly obtain sã = sU , which is what
is really needed. Thus the assumtpion of characteristic zero may be removed.

3. Standard intertwining operator and the Langlands
classification

In this section, we show that the Langlands quotient may be realized as
the image of a standard intertwining operator.

For P = MU a standard parabolic subgroup of G, we let X(M) denote
the set of rational characters of M . Let q be the number of elements in
the residue field of F . There is a homomorphism (cf. [8]) HM : M → aM =
Hom(X(M), R) such that q〈ν,HM (m)〉 = |ν(m)| for all m ∈ M, ν ∈ X(M).
Given ν ∈ a∗M , let us write

exp ν = q〈ν,HM (·)〉

for the corresponding character of M . As in Note 2.4 [3], there is then an
associated unramified character of M̃ ; for clarity, we denote this character
ẽxp ν.



4 D. BAN AND C. JANTZEN

We now recall the Langlands classification for G̃ in the quotient setting
(see Remark 4.2 [3]). A set of Langlands data for G̃ is a triple (P̃ , ν, τ) with
the following properties:

(1) P̃ = M̃Û is a standard parabolic subgroup of G̃,
(2) ν ∈ (aM̃ )∗+ = {x ∈ a∗M | 〈x, α〉 > 0, for all α ∈ S(P,AM )}, and
(3) τ is (the equivalence class of) an irreducible tempered representation

of M̃ ,

where S(P,AM ) denotes the set of simple roots for the pair (P,AM ).
We now state the Langlands classification in the quotient setting.

Theorem 3.1 (The Langlands classification).
Suppose (P̃ , ν, τ) is a set of Langlands data for G̃. Then the induced rep-

resentation iG̃
M̃

(ẽxp ν ⊗ τ) has a unique irreducible quotient, which we denote
by L(P̃ , ν, τ). Conversely, if π is an irreducible admissible representation of
G̃, then there exists a unique (P̃ , ν, τ) as above such that π ∼= L(P̃ , ν, τ).

Let P̃ = M̃Û and P̃ ′ = M̃Û ′ be two parabolic subgroups of G̃ with the
same Levi factor M̃ . Let (π, V ) be an admissible representation of M̃ . For
f ∈ VIndG̃

P̃ π
and x̃ ∈ G̃, we formally define

(JP̃ ′|P̃ (π)f)(x̃) =
∫

Û∩Û ′\Û ′
f(u′x̃)du′.

If the integral converges absolutely for all f ∈ VIndG̃

P̃ π
and x̃ ∈ G̃, then

JP̃ ′|P̃ (π) defines an intertwining operator IndG̃
P̃

π → IndG̃
P̃ ′π.

Let P̃ = M̃Û be a standard parabolic subgroup of G̃. Let τ be an
irreducible tempered representation of M̃ and

ν ∈ (aM̃ )∗+.

We consider the representation

Π = IndG̃
P̃

(ẽxp ν ⊗ τ) .

Then the contragredient Π̃ satisfies

Π̃ ∼= IndG̃
P̃

(ẽxp (−ν)⊗ τ̃) .

The triple (P̃ ,−ν, τ̃) is a set of Langlands data (in the subrepresentation
version of Langlands’ classification). It follows that Π̃ has a unique irreducible
subrepresentation, and consequently, Π has a unique irreducible quotient.
Denote this quotient by π.

Recall that two parabolic subgroups of G are called opposite if their in-
tersection is a Levi subgroup of each of them. Let P− denote the opposite
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parabolic subgroup of P and P̄ be the unique standard parabolic subgroup
conjugate to P−. The integral defining

JP̃−|P̃ (ẽxp ν ⊗ τ)

is absolutely convergent ([10], Théorème 2.4.1), so it defines an intertwining
operator

Π → Π′ = IndG̃
P̃− (ẽxp ν ⊗ τ) .

We claim that the image of JP̃−|P̃ (ẽxp ν⊗τ) is irreducible. Let w` denote the
longest element in the Weyl group of G (or a representative thereof). Since
w`(Π′) ∼= Π′, we get an intertwining operator

J : Π → Π′′ = IndG̃
˜̄P

(ẽxpw`(ν)⊗ w`(τ)) .

Again, we have a set of Langlands data ( ˜̄P,w`(ν), w`(τ)). It follows that Π′′

has a unique irreducible subrepresentation; denote it by π′′. Let π′ ∼= π′′ be
the corresponding subquotient in Π′. We claim π ∼= π′.

From Remark 4.5 [3], we know

ẽxp (−ν)⊗ τ̃ ≤ rG̃
P̃

(π̃)

and π̃ is the only irreducible subquotient of Π̃ having ẽxp (−ν) ⊗ τ̃ in its
Jacquet module with respect to P̃ . Then, using [7] and [3],

ẽxp ν ⊗ τ ≤ rG̃
P̃−(π).

On the other hand,

ẽxpw`(ν)⊗ w`(τ) ≤ rG̃
˜̄P
(π′′)

and again we have uniqueness. Conjugation with w` gives

ẽxp ν ⊗ τ ≤ rG̃
P̃−(π′).

Now, uniqueness implies π ∼= π′. Finally, simple properties of intertwining
operators tell us that π′ is the image of JP̃−|P̃ (ẽxp ν ⊗ τ).

We summarize:

Theorem 3.2. The Langlands subrepresentation L(P, ν, τ) may be real-
ized as the image of the standard intertwining operator JP̃−|P̃ (ẽxp ν ⊗ τ).

Remark 3.3. As in Lemma 1.1 [9], the above discussion may be used to
relate the data for the subrepresentation version of Langlands’ classification
with that for the quotient version, as well as relating the data for π̃ with that
for π.



6 D. BAN AND C. JANTZEN

4. Duality

In this section, we define the duality operator DG̃ and study its properties.
Following [1], for I, J ⊂ S, define

D(I, J) = {w ∈ W | w−1 · I ⊂ Φ+, w · J ⊂ Φ+}.
We denote by wJ the longest element of D(J, ∅).

The following covers the basic properties (1.1)–(1.4) of [1], which are the
key properties needed to prove the basic properties of duality:

Proposition 4.1. Let M̃, L̃ be the standard Levi factors of G̃ correspond-
ing to I, J ⊂ S.

1. If L̃ < M̃ , then iG̃
M̃
◦ iM̃

L̃
= iG̃

L̃
and rM̃

L̃
◦ rG̃

M̃
= rG̃

L̃
.

2. We have
rG̃
M̃
◦ iG̃

L̃
=

∑
w∈D(I,J)

iM̃
M̃ ′ ◦ w ◦ rL̃

L̃′ ,

where L̃′ = L̃ ∩ w−1(M̃) and M̃ ′ = M̃ ∩ w(L̃).
3. If M̃ = wL̃w−1 for an element w ∈ W , then

iG̃
M̃
◦ w = iG̃

L̃
.

4. If M̃ = wJ
−1L̃wJ , then˜ ◦ rG̃

L̃
= wJ ◦ rG̃

M̃
◦ ˜,

where ˜ denotes contragredient.

Proof. The first of these is simply Proposition 1.9 [6], which holds in
the generality needed here. The second is done in Proposition 3.3 [3] and is
essentially a corollary of Theorem 5.2 [6].

The proof of (3) in [5] relies on three results: the linear independence of
characters, the Langlands classification, and the geometric lemma of [6] (or
Theorem 6.5 [7]). The linear independence of characters is general, and holds
for the groups we are considering (cf. Lemma 1.13.1 [Sil]); the Langlands
classification for the groups under consideration is done in [3]. The geometric
lemma is just (2) above. With these observations, the proof from [5] extends
to cover the groups under consideration.

(4) In [3], we explained how parts of Casselman’s work [7] for G can be
applied to G̃. More specifically, in section 2 of [3] we proved the structure
results for G̃ which are a basis for Casselman’s proof in sections 4.1 and 4.2
of [7]. Then Corollary 4.2.5 of [7] holds for G̃. Conjugation by wJ gives (4).

We define the duality operator DG̃ on the Grothendieck group R(G̃) as
in [1], [12]:

DG̃ =
∑
I⊂S

(−1)|I|iG̃
L̃I
◦ rG̃

L̃I
.



THE LANGLANDS QUOTIENT THEOREM FOR FINITE CENTRAL EXTENSIONS II 7

The following is Théorème 1.7 [1]:

Theorem 4.2. The duality operator DG̃ has the following properties:
1. DG̃ ◦ ˜ = ˜ ◦DG̃

2. for J ⊂ S, one has

DG̃ ◦ iG̃
L̃J

= iG̃
L̃J
◦DL̃J

, rG̃
L̃J
◦DG̃ = Ad(wJ) ◦DL̃J′

◦ rG̃
L̃J′

,

where wJ is as above and J ′ = w−1
J (J).

3. D2
G̃

= id (i.e., DG̃ is an involution)
4. if π is supercuspidal, DG̃(π) = (−1)|S|π.

Proof. (1) follows immediately from Proposition 4.1 (4) and the defi-
nition of DG. Both parts of (2) follows from Proposition 4.1 (1)–(3) via the
same calculations as in [1]. Note that the result of Solomon used for the
first part of (2) is essentially a combinatorial identitiy on the Weyl group,
so applies equally well to finite central extensions. (3) follows from (2) and
induction/restriction in stages (Proposition 4.1 (1)) via the same calculation
as in [1]. (4) is immediate from the definition.

It remains to verify that irreducibility is preserved (up to ±) by duality.
The proof is essentially a sketch of that from [1]. We start by reviewing the
notation from [1].

Let E be a G̃-module. For I ⊂ S, we denote by E(UI) the subspace of
E spanned by the elements ux − x, where x ∈ E and u ∈ ŨI . Set EUI

=
E/E(UI) = rG̃

L̃I
(E). Define

EI = (iG̃
L̃I
◦ rG̃

L̃I
)(E).

Let I ⊂ J ⊂ S. The natural projection from EUJ
to EUI

induces a map
φJ

I : EJ → EI . If J = I ∪ {α}, we define

ẼJ = EJ ⊗C Λ|S−J|(CS−J) and φ̃J
I = φJ

I ⊗C εJ
I ,

where εJ
I : Λ|S−J|(CS−J) → Λ|S−I|(CS−I) is the map given by ω 7→ ω ∧ α.

Define
ẼJ,I = rG̃

L̃I
(ẼJ).

Theorem 4.3. The duality operator DG̃ takes irreducible representations
to irreducible representations, up to sign.

Proof. The proof follows that of [1]. We outline the argument, indicat-
ing any changes needed for the case of finite central extensions. We remark
that the principal changes are (1) the use of [6] in place of [7] (as the results
of [6] are done in the generality of groups of totally disconnected type, rather
than just reductive p-adic groups), and (2) a minor correction to Aubert’s
proof.
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Let I ⊂ S. Let E be an irreducible representation of G̃ such that E has
supercuspidal support on (the associate class of) L̃I .

As in Aubert, dk is defined as follows: If |J | = k, we let dk be defined on
ẼJ by

⊕
I ⊂ J

|I| + 1 = |J|

φ̃J
I . It is a straightforward matter to show that

0 −→ E
d|S|−→

⊕
|J|=|S|−1

ẼJ

d|S|−1−→
⊕

|J|=|S|−2

ẼJ

d|S|−2−→ · · · d1−→ Ẽ∅ −→ 0

is a complex. As in [2], the key is to show that it is in fact an exact sequence.
Suppose w ∈ D(J, I). It is a straightforward argument to check that the

map(
iP̃JwP̃I

L̃J
◦ rG̃

L̃J

)
(E) −→

(
iP̃I

w−1L̃Jw∩L̃I
◦Ad(w−1) ◦ rG̃

L̃J∩wL̃Iw−1

)
(E)

f 7−→ Φf ,

with Φf defined by Φf (p̃) = f(wp̃) for all p̃ ∈ P̃I , is an isomorphism of
P̃I -modules. Taking the Jacquet modules, we may then obtain
(4.1)[(

iP̃JwP̃I

L̃J
◦ rG̃

L̃J

)
(E)

]
UI

∼=
[(

iP̃I

w−1L̃Jw∩L̃I
◦Ad(w−1) ◦ rG̃

L̃J∩wL̃Iw−1

)
(E)

]
UI

∼=
(
iL̃I

L̃I∩w−1L̃Jw
◦Ad(w−1) ◦ rL̃J

wL̃Iw−1∩L̃J

)
(rG̃

L̃J
(E)).

If this is nonzero, we must have wL̃Iw
−1 ∩ L̃J conjugate to L̃I (since E ∈

Alg({I})), hence wL̃Iw
−1 ⊂ L̃J . In this case, we may conclude that (4.1)

reduces to the following:[(
iP̃JwP̃I

L̃J
◦ rG̃

L̃J

)
(E)

]
UI

∼= (w−1) ◦ rG̃
wL̃Iw−1(E)

as L̃I -modules.
Choose W = θ1 ⊃ θ2 ⊃ · · · ⊃ θt+1 = ∅ with θi − θi+1 = wi so that

Yj = P̃∅θt+1−iP̃∅ satisfies the hypotheses of Theorem 5.2 [6] (for P̃∅ double-
cosets). We note that the φJ

K–and hence dk,UI
–respect the filtration by θi.

As in Aubert’s proof, if

0 −→ Eθi

UI
/E

θi+1
UI

−→
⊕

|J|=|S|−1

Ẽθi

J,I/Ẽ
θi+1
J,I −→

⊕
|J|=|S|−2

Ẽθi

J,I/Ẽ
θi+1
J,I −→

. . . −→
⊕

|J|=|I|

Ẽθi

J,I/Ẽ
θi+1
J,I
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is exact for all i = 1, . . . , t (where Ẽθi

J,I denotes the image of the elements of
ẼJ,I supported on P̃∅θiP̃∅, then

0 −→ EUI

d|S|,I−→
⊕

|J|=|S|−1

ẼJ,I

d|S|−1,I−→
⊕

|J|=|S|−2

ẼJ,I

d|S|−2,I−→ · · ·
d|I|,I−→

⊕
|J|=|I|

ẼJ,I

is also exact.
We now make a change–a minor correction, actually–to Aubert’s setup.

We keep Θ the same as for Aubert: Θ consists of subsets θ ⊂ W having the
property that if w ∈ θ, then w′ ∈ θ for any w′ having `(w′) > `(w). Suppose
I, J fixed as above. We define θ′ ⊂ θ to be the largest subset which is left-
invariant under multiplication by WJ and right-invariant under multiplication
by WI . In particular, a function in Eθ

J,I is actually supported on Eθ′

J,I .

Fix i and let w = wi. Suppose Ẽθi

J,I/Ẽ
θi+1
J,I 6= 0. Then, θ′i 6= θ′i+1. We claim

that w ∈ D(J, I) (or equivalently, w−1 ∈ D(I, J)). Since {w} = θi − θi+1,
we have WJwWI ⊂ θ′i ⊂ θi (using θ′i 6= θi). Now, WJwWI − {w} ⊂ θi+1,
so everything in WJwWI must have length at least `(w). As D(J, I) consists
of minimimal length double-coset representatives, the claim follows. Further,
we claim that wWIw

−1 ⊂ WJ and

Ẽθi

J,I/Ẽ
θi+1
J,I

∼= Ad(w−1) ◦ rG̃
wL̃Iw−1(E)

as L̃I -modules. (Conversely, if w ∈ D(J, I) and wWIw
−1 ⊂ WJ , then

Ẽθi

J,I/Ẽ
θi+1
J,I

∼= w−1 ◦ rG̃
wM̃Iw−1(E) 6= 0.)

As noted earlier, Ẽθi

J,I = Ẽ
θ′i
J,I and Ẽ

θi+1
J,I = Ẽ

θ′i+1
J,I . In the notation of

section 5 [6], Eθ′

J,I plays the role of FY (more precisely, FY applied to rG̃
M̃J

(E)).

Then Ẽθi

J,I/Ẽ
θi+1
J,I appears in the role of FZ (again, applied to rG̃

M̃J
(E)). Let

v be a representative of w−1 in G̃. (Note that (3) on p.460 [6] wants w̄ ∈ G̃

such that P̃J w̄−1 ⊂ Z; our v plays this role.) By Theorem 5.2 [6],

Ẽθi

J,I/Ẽ
θi+1
J,I

∼= ΦZ(rG̃
M̃J

(E)) ∼= iM̃I

M̃I∩v(M̃J )
◦ v ◦ rM̃J

M̃J∩v−1(M̃I)
(rG̃

M̃J
(E)).

Since E ∈ Alg({I}), we must have M̃I ⊂ v(M̃J), so v−1M̃Iv ⊂ M̃J ⇒
wWIw

−1 ⊂ WJ , as claimed. Therefore, we have

Ẽθi

J,I/Ẽ
θi+1
J,I

∼= iM̃I

M̃I
◦ w−1 ◦ rM̃J

w(M̃I)
(rG̃

M̃J
(E)) ∼= w−1 ◦ rG̃

wM̃Iw−1(E),

also as claimed.
As in [1], it now suffices to show the exactness of

. . . −→
⊕

|J| = k
wi ∈ D(J, I)

wiWIw−1
i ⊂ WJ

w−1
i ◦ rG̃

wiM̃Iw−1
i

(E) −→ . . .
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Note that wi ∈ D(J, I) with wiWIw
−1
i ⊂ WJ if and only if wi ∈ D(J, ∅) with

wi(I) ⊂ J . If we let Swi = {α |w−1
i · α > 0}, we see that wi ∈ D(J, ∅) is

equivalent to J ⊂ Swi . Thus, we are reduced to showing the exactness of

(4.2) . . . −→
⊕

|J| = k
w(I) ⊂ J ⊂ Sw

w−1 ◦ rG̃
wM̃Iw−1(E) δk−→ . . .

The next step is to identify δk. Consider the following part of a commu-
tative diagram:

Ẽ
θj

J,I/Ẽ
θj+1
J,I

d̃I
J−→

⊕
α∈J Ẽ

θj

J−{α},I/Ẽ
θj+1

J−{α},I

F J,I
j

y y∑
α∈J F

J−{α},I
j

Ad(wj)(rG̃
wjM̃Iw−1

j

(E)) δ−→
⊕

Ad(wj)(rG̃
wjM̃Iw−1

j

(E)).

Here, F J,I
j is inherited from Fj = Fθj /Fθj+1 (as in section 5 [6]). (Note that

up to sign, the image of F J,I
j is ΦJ,I

j (EJ) ∼= Ad(wj)(rG̃
wjM̃Iw−1

j

(E)).) We would

like to show that up to sign, δ is just the identity.
To make the connection between our setup and that of [6] clear, we pause

to note that for [6], P = P̃J , Q = P̃I , and w = w−1
j . Recall that the

equivalence FZ
∼= ΦZ is defined by an intertwining operator A constructed

from an intertwining operator Ā with certain properties. In our case,

Āf =
∫

ÛI∩w−1
j (P̃J )\ÛI

rw(M̃I),M̃J
(f(wj ûIm̃I)) dµ(ûI).

Therefore, if f + E
θj+1
J,I ∈ E

θj

J,I/E
θj+1
J,I ,

F J,I
j (f + E

θj+1
J,I ) =

∫
ÛI∩w−1

j (P̃J )\ÛI

rw(M̃I),M̃J
(f(wj ûIm̃I)) dµ(ûI).

On the other hand,

F
J−{α},I
j ◦ φJ

J−{α}(f + E
θj+1
J,I ) = F

J−{α},I
j (rJ

J−{α}(f) + E
θj+1

J−{α},I)

=
∫

ÛI∩w−1
j (P̃J−{α})\ÛI

rw(M̃I),M̃J−{α}
(rJ

J−{α}(f)(wj ûIm̃I)) dµ(ûI).

Observe that rw(M̃I),M̃J−{α}
◦ rJ

J−{α} = rw(M̃I),M̃J
. As

w ∈ D(J, I), α ∈ J ⇒ UI ∩ w−1
j (P̃J−{α}) = UI ∩ w−1

j (P̃J),

these integrals are the same. Therefore, up to sign, δ is the identity.
The rest of the proof is now the same as in [1].
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