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a b s t r a c t

Regression analysis is probably one of the most used statistical techniques. We consider
the case when the regression function is monotonically changing with some or all of
the predictors in a region of interest. Restricted confidence interval for the mean of the
regression function is constructedwhen two predictors are present. Earlier analyses would
allow an investigator either to ignore monotonicity altogether or to consider only one
predictor at a time but not both simultaneously. The methodologies developed are applied
on a real data set to study the effects of patients’ age and infection risk on their length of
stay in US hospitals.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Preliminaries

Consider the standard linear regression model Y = Xβ + ϵ, where Y is an (n × 1) vector, X is an (n × p) matrix of
rank p, β is a (p × 1) vector of unknown parameters, and ϵ is an (n × 1) multivariate normal vector of errors with zero
mean and covariance matrix σ 2I . There is a wide range of applications where the sign constraints on regression coefficients
are useful. This area of statistical research is known as non-negative least squares (NNLS). In image processing or spectral
analysis NNLS is quite well-known, where the signs of the regression parameters can be estimated, or known a priori
[2,4,5,7,8,19,23]. NNLS regression can be a useful tool for matrix factorization [10]. The non-negative Garrote [3] uses a sign-
constraint, where the signs are derived from an initial estimator as is the positive Lasso [6]. This constraint is particularly
relevant when modeling non-negative data, which emerge, e.g., in the form of pixel intensity values of an image, time
measurements, histograms or count data, economical quantities such as prices, incomes and growth rates. Non-negativity
constraints occur naturally in numerous deconvolution and unmixing problems in diverse fields such as acoustics [14],
astronomical imaging [1], genomics [13], proteomics [21], spectroscopy [5] and network tomography [15]; see [4] for a
survey.

It is more common in order-restricted regression analysis to consider inference under null hypothesis of the type Rβ = r
versus Rβ ≥ r, Rβ ≠ r , for some matrix R, vector r [18,20]. Restricted statistical inference in regression analysis under
nonnegativity constraints on β (NNLS) is rare at best. This emerges when the experimenter believes that the regression
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function changes monotonically with the predictors (see references above). [16] considered the inference for the mean of
the response variablewhen one predictor variable is present, but theirwork does not extend to higher dimensional cases in a
straightforwardmanner. In this paper we consider the case of two predictors following the same format as theirs. Increasing
the number of predictors not only makes practically more useful results but also generates new spaces in null hypothesis
parameter region which has no counterpart in lower dimensions (e.g., mixed signs in Section 4). We have used tools from
calculus and geometry [9] in our analysis. Graphs are used throughout the paper for illustration, where we have used the
convention that arrows on axes indicate to the positive directions. Often we use a (cross-sectional) two-dimensional graph
to illustrate a three-dimensional region for clarity or when the three dimensional graph is messy to display.

To obtain confidence intervals we have considered the acceptance regions of corresponding one-sided tests [12,23]. Least
favorable distributions are used for calculating the critical values of the tests, however, these distributions are known to be
conservative. Restricted likelihood ratio tests (LRT) are used, but it is shown that often these tests perform poorly than a
related unrestricted test. In such cases, we have proposed an ad hoc test in similar spirit as in [16] to improve on the LRT.

We have applied our methodology on the SENIC data [11]. The primary objective of the study was to determine whether
infection surveillance and control programs have reduced the rates of nosocomial (hospital-acquired) infection in US
hospitals. Here we suspect β1 to be positive and β2 to be negative because older patients seem to stay longer in hospital
and higher infection is associated with shorter hospital stay. Whereas the ordinary regression analysis would ignore this
monotonicity information, our analysis implements it. Following [16] one has to consider these important predictors only
one at a time. Our analysis enables one to consider them simultaneously. See Section 7 for data analysis on the example.

1.2. Regression basics

Assuming the first column of X to be all ones, and for two predictor variables X1, X2, for a sample of size n, the regression
model becomes, Yi = β0+β1x1i+β2x2i+ϵi, 1 ≤ i ≤ n. Let β̂0, β̂1 and β̂2 be the unrestrictedmaximum likelihood estimates
(MLEs) ofβ0,β1 andβ2 respectively. Let, S2x1 =


x21i, S2x2 =


x22i and S2 =


(Yi−β̂0−β̂1x1i−β̂2x2i)2/ν, where ν = n−3.

We assume that the columns of X are orthogonal, that is,


i x1i = 0,


i x2i = 0 and


i x1ix2i = 0.
Then it is well known that β̂0, β̂1, β̂2, S2 are mutually independent. Further, β̂0 ∼ N (β0, σ 2/n), β̂1 ∼ N (β1, σ

2/S2x1),
β̂2 ∼ N (β2, σ

2/S2x2) and νS2/σ 2
∼ χ2

ν .
Let γ = (γ0, γ1, γ2)

⊤ where γ0 =
√
nβ0, γ1 = Sx1β1, γ2 = Sx2β2 then the unrestricted MLE of γ is γ̂ = (γ̂0, γ̂1, γ̂2)

⊤
=

(
√
nβ̂0, Sx1 β̂1, Sx2 β̂2)

⊤
∼ N 3(γ, σ 2I).

Under the constraints β1 ≥ 0, β2 ≥ 0, the restricted MLEs of βi’s are given by, β∗

0 = β̂0, β
∗

1 = max{β̂1, 0} = β+

1 , β∗

2 =

max{β̂2, 0} = β+

2 . Then the restricted parameter space for γ is {γ : γ0 ∈ R, γ1 ≥ 0, γ2 ≥ 0}. The restricted MLEs of γ are
γ ∗

0 = γ̂0, γ
∗

1 = max{γ̂1, 0} = γ +

1 , γ ∗

2 = max{γ̂2, 0} = γ +

2 .
The case of σ 2 known is considered in Sections 2–5. Section 6 considers σ 2 unknown case. We end with some discussion

in Section 8. Statistical inference under other combinations of sign restrictions of β1, β2 can also be developed similarly.
Supplement of this paper contains Lemmas 1–4 with proofs, graphs S1–S3, a chart summarizing the distributions of LRT in
limiting cases of (x01, x02), tables of critical values and formulas of confidence intervals in original variables (see [17] for
further details). The computer programs needed for the example and calculation of critical values are written in fortran and
R (available from the authors on request).

2. Inferences for β0 + β1x01 + β2x02

We consider inferences about the mean function E(Y ) = β0 + β1x01 + β2x02 at predictor variable values (x01, x02) for
different possible signs of x01 and x02.

2.1. Test for β0 + β1x01 + β2x02 (x01 > 0, x02 > 0)

First we consider the hypotheses,

G0 : β0 + β1x01 + β2x02 ≤ l, β1 ≥ 0, β2 ≥ 0, G1 : β1 ≥ 0, β2 ≥ 0, (2.1)

for some l ∈ R. Using the transformation from β to γ , the constraint β0 + β1x01 + β2x02 ≤ l in (2.1) becomes,
γ0√
n +

γ1x01
Sx1

+
γ2x02
Sx2

≤ l, or, γ2 ≤ b1 − c1γ0 − d1γ1, where b1 =
lSx2
x02

, c1 =
Sx2

x02
√
n and d1 =

x01Sx2
x02Sx1

.
Then, using γi hypotheses (2.1) are,

G01 : 0 ≤ γ2 ≤ b1 − c1γ0 − d1γ1, 0 ≤ γ1, G11 : γ1 ≥ 0, γ2 ≥ 0, (2.2)

respectively. To visualize geometrically the sets G01 and G11 in the γ space, let K be the closed convex cone bounded by the
hyperplanes {c1γ0+d1γ1+γ2 = 0, γ1 ≥ 0, γ2 ≥ 0}, {γ2 = 0, 0 ≤ γ1 ≤

−c1γ0
d1

, γ0 ≤ 0}, and {γ1 = 0, 0 ≤ γ2 ≤ −c1γ0, γ0 ≤

0} and let L = (b1/c1, 0, 0), then G01 is the shifted coneK +L. Shifting the coneK by b1/c1 units along the positive direction
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Fig. 1. Left: The region G01 and the rejection region of LRT of (2.2). A look from the negative direction of γ0 axis. Right: Another view of the rejection region
of LRT of (2.2) from the positive direction of γ0 axis. Here region G01 is hidden behind.

of the γ0 axis, we get the faces of G01 as {c1γ0 + d1γ1 + γ2 = b1, γ1 ≥ 0, γ2 ≥ 0}, {γ2 = 0, c1γ0 + d1γ1 + γ2 ≤ b1, γ0 ≤
b1
c1

},

and {γ1 = 0, c1γ0 + d1γ1 + γ2 ≤ b1, γ0 ≤
b1
c1

} (see Fig. 1 left).
The dual cone of G01 is G∗

01 = K ∗
+ L, where K ∗ is the Fenchel dual cone of K , consisting of all the vectors that make

obtuse angles with all the vectors in K [19], so that γ̂ ∈ G∗

01 implies that the projection of γ̂ onto G01 is L. The dual cone
K ∗ is polyhedral with faces {γ0 − c1γ2 = 0, γ0 ≥ 0, γ1 ≤ (d1/c1)γ0}, {γ0 − (c1/d1)γ1 = 0, γ0 ≥ 0, γ2 ≤ (1/c1)γ0} and
{γ0 = 0, γ1 ≤ (d1/c1)γ0, γ2 ≤ (1/c1)γ0} (Lemma 1 in the Supplement). The faces of the dual cone are useful to develop the
rejection region.

The restricted MLE γ∗ of γ under G11 is (γ ∗

0 , γ ∗

1 , γ ∗

2 )⊤ = (γ̂0, γ̂
+

1 , γ̂ +

2 )⊤. Let γ̄ denote the MLE of γ under G01. Then γ̄ is
the equal weight projection of γ̂ onto G01. Note that in this problem, γ̄ is also the equal-weight projection of γ∗ onto G01,
and γ̂ ∈ G∗

01 implies that γ̄ = L = (b1/c1, 0, 0)⊤.
For testing G01 versus G11 − G01, the LRT rejects G01 for large values of the test statistic,

χ̄2
01 ≡ −2 log3 = (∥γ̂ − γ̄∥

2
− ∥γ̂ − γ∗

∥
2)/σ 2

= ∥γ̄ − γ∗
∥
2/σ 2, (2.3)

where3 is the appropriate LRT statistic. Nextwe investigate the rejection region of LRT in (2.3), two different views ofwhich
are shown in Fig. 1.

Let {γ̂ : ∥γ̄ − γ∗
∥ > Cασ } be the rejection region for a α-level test for some critical value Cα . For ease of computation,

depending on the signs of γ̂i, i = 1, 2 and hyperplanes of interest, we divide the R3 space into thirteen disjoint polyhedral
cone regions and calculate the test statistic χ̄2

01 in (2.3) for each region separately. Finally we combine all these regions to
yield the nine disjoint regions as stated in (2.6).

First consider when γ̂ ∈ {(γ0, γ1, γ2) : γ1 < 0, γ2 < 0} = S1 ⊎ S2, where ⊎ means disjoint union, S1 = {γ0 <
b1
c1

, γ1 <

0, γ2 < 0} and S2 = {γ0 ≥
b1
c1

, γ1 < 0, γ2 < 0}.

From (2.3), when γ̂ ∈ S1, ∥γ∗
− γ̄∥ = ∥(γ̂0, 0, 0)− (γ̂0, 0, 0)∥ = 0.When γ̂ ∈ S2, ∥γ∗

− γ̄∥ = ∥(γ̂0, 0, 0)− (
b1
c1

, 0, 0)∥ =

γ̂0 −
b1
c1

≥ Cασ and hence the boundary of the rejection region in S2 is γ̂0 =
b1
c1

+ Cασ (two dimensional views of this
boundary plane are the line CD in Fig. 2 (left) when γ1 = 0 and the line CG in Fig. 2 (right) when γ2 = 0).

The plane c1γ0 + d1γ1 + γ2 = b1 (see (2.2)) intersects the γ0γ2-plane (i.e. γ1 = 0) at the line c1γ0 + γ2 = b1 (line ML in
Fig. 2 (left)). Perpendicular to this line at the point L on the plane γ1 = 0 is the line γ0 − c1γ2 =

b1
c1

(line NL in Fig. 2 (left)).

The hyperplanes in R3 generated from the lines c1γ0 + γ2 = b1 and γ0 − c1γ2 =
b1
c1

are used to define the regions S3, S4, S5
below.

Consider when γ̂ ∈ {γ : γ1 < 0, γ2 ≥ 0} = S3 ⊎ S4 ⊎ S5, where S3 = {γ1 < 0, 0 ≤ γ2 < b1 − c1γ0},
S4 = {γ1 < 0, γ2 ≥ max{b1 − c1γ0,

1
c1

γ0 −
b1
c21

}} and S5 = {γ1 < 0, 0 ≤ γ2 < 1
c1

γ0 −
b1
c21

}, then γ∗ is the projection

of γ̂ onto the γ0γ2 plane and γ̄ is the projection of γ∗ onto the edge of G01 on the plane γ0γ2 (onto the line c1γ0 + γ2 = b),
if γ∗

∉ G01.
So when γ̂ ∈ S3, ∥γ∗

− γ̄∥ = ∥(γ̂0, 0, γ̂2) − (γ̂0, 0, γ̂2)∥
2

= 0. When γ̂ ∈ S4, ∥γ∗
− γ̄∥

2
= ∥(γ̂0, 0, γ̂2) −

((γ̂0, 0, γ̂2) · u)u∥
2

≥ C2
ασ 2, where u is a unit vector along the line c1γ0 + γ2 = b1 on the γ0γ2-hyperplane. This gives

the hyperplane which is parallel and has Cασ distance to the hyperplane c1γ0 + γ2 = b1. The equation of this hyperplane is

c1γ0 + γ2 = b1 +


1 + c21Cασ . So the boundary of the rejection region in S4 is c1γ0 + γ2 = b1 +


1 + c21Cασ (line AB in

Fig. 2 (left) is the two dimensional view when γ1 = 0 of the boundary of the rejection region).
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Fig. 2. For C = (
b1
c1

+ Cασ , 0, 0), B = (
b1
c1

+
c1√
1+c21

Cασ , 0, 1√
1+c21

Cασ), two dimensional views of the rejection region of (2.3). Left. The side of the curve

ABCD, indicated by R, when γ1 = 0. Right. The side of the curve EFCG, indicated by R, when γ2 = 0.

When γ̂ ∈ S5, ∥γ∗
− γ̄∥

2
= ∥(γ̂0, 0, γ̂2) − (

b1
c1

, 0, 0)∥2
= (γ̂0 −

b1
c1

)2 + γ̂ 2
2 ≥ C2

ασ 2, and hence the boundary of the

rejection region is a partly cylindrical region with axis γ0 =
b1
c1

, γ2 = 0 and radius Cασ contained in the acceptance region
(the curve BC in Fig. 2 (left) is the two dimensional view on the γ0γ2-hyperplane).

The plane c1γ0 + d1γ1 + γ2 = b1 intersects the γ0γ1-plane (i.e. γ2 = 0) at the line c1γ0 + d1γ1 = b1 (line XL in Fig. 2
right). Perpendicular to this line at the point L on the γ0γ1-plane is the line γ1 =

d1
c1

γ0 −
b1d1
c21

(line LY in Fig. 2 (right)). The

hyperplanes in R3 generated from the lines c1γ0 + d1γ1 = b1 and γ1 =
d1
c1

γ0 −
b1d1
c21

are used to define the regions S6, S7, S8
below.

Consider when γ̂ ∈ {γ : γ1 ≥ 0, γ2 < 0} = S6 ⊎ S7 ⊎ S8, where S6 = {0 ≤ γ1 <
b1
d1

−
c1
d1

γ0, γ2 < 0},

S7 = {γ1 ≥ max{ b1
d1

−
c1
d1

γ0,
d1
c1

γ0 −
b1d1
c21

}, γ2 < 0}, and S8 = {0 ≤ γ1 <
d1
c1

γ0 −
b1d1
c21

, γ2 < 0}, then γ∗ is the

projection of γ̂ onto the γ0γ1 hyperplane and γ̄ , the projection of γ∗ onto the edge of G01 on the hyperplane γ0γ1 (onto
the line c1γ0 + d1γ1 = b1 which is line XL in Fig. 2 (right)), if γ∗

∉ G01.
So when γ̂ ∈ S6, ∥γ∗

− γ̄∥ = ∥(γ̂0, γ̂1, 0) − (γ̂0, γ̂1, 0)∥2
= 0. When γ̂ ∈ S7, ∥γ∗

− γ̄∥
2

= ∥(γ̂0, γ̂1, 0) − ((γ̂0, γ̂1, 0) ·

v)v∥2
≥ C2

ασ 2, where v is a unit vector along the line c1γ0 + d1γ1 = b1 on the γ0γ1-hyperplane, yields a hyperplane
which is parallel and has Cασ distance to the hyperplane c1γ0 + d1γ1 = b1. The equation of this new hyperplane is

c1γ0 + d1γ1 = b1 +


c21 + d21Cασ , the boundary of the rejection region in S7 (line EF in Fig. 2 (right) is the two dimensional

view of the boundary of the rejection region when γ2 = 0).
When γ̂ ∈ S8, ∥γ∗

− γ̄∥
2

= ∥(γ̂0, γ̂1, 0) − (
b1
c1

, 0, 0)∥2
= (γ̂0 −

b1
c1

)2 + γ̂ 2
1 ≥ C2

ασ 2, and hence the boundary of the
rejection region in S8 is (the curve FC in Fig. 2 (right) is the two dimensional view on γ0γ1 plane) a cylindrical region with
axis γ0 =

b1
c1

, γ1 = 0 and radius Cασ , contained in the acceptance region.
Next consider the equation of the hyperplane which is orthogonal to the hyperplane c1γ0 + d1γ1 + γ2 = b1 and contains

the line c1γ0 + γ2 = b1 on the hyperplane γ1 = 0, given by c1d1γ0 − (1 + c21 )γ1 + d1γ2 = b1d1.
Similarly consider the equation of the hyperplane which is orthogonal to the hyperplane c1γ0 + d1γ1 + γ2 = b1 and

contains the line c1γ0 + d1γ1 = b1 on the hyperplane γ2 = 0, given by c1γ0 + d1γ1 − (c21 + d21)γ2 = b1.
The hyperplanes defined in last two paragraphs along with those used in the definitions of S3 − S8 are used to define

S9 − S13 below. When γ̂ ∈ {γ : γ1 ≥ 0, γ2 ≥ 0} = S9 ⊎ S10 ⊎ S11 ⊎ S12 ⊎ S13, where S9 = G01 = {c1γ0 + d1γ1 + γ2 ≤

b1, 0 ≤ γ1, 0 ≤ γ2}, S10 = {0 ≤ γ1 ≤
c1d1
1+c21

γ0 +
d1

1+c21
γ2 −

b1d1
1+c21

, γ2 ≥
1
c1

γ0 −
b1
c21

}, S11 = {γ1 ≥
d1
c1

γ0 −
b1d1
c21

, 0 ≤ γ2 ≤

c1
c21+d21

γ0+
d1

c21+d21
γ1−

b
c21+d21

}, S13 = {0 ≤ γ1 ≤
d1
c1

γ0−
b1d1
c21

, 0 ≤ γ2 ≤
1
c1

γ0−
b1
c21

}, and S12 = {γ1 ≥ 0, γ2 ≥ 0}−S9∪S10∪S11∪S13
(see Fig. 3).

When γ̂ ∈ S9, ∥γ∗
− γ̄∥ = ∥γ̂ − γ̂∥

2
= 0. When γ̂ ∈ S10, ∥γ∗

− γ̄∥
2

= ∥γ̂ − (γ̂ · u)u∥
2

≥ C2
ασ 2, where u is a unit vector

along the line c1γ0 + γ2 = b1, produces a curved plane which has Cασ distance to the line c1γ0 + γ2 = b1, γ1 = 0. Here
the boundary of the rejection region is the surface of a cylinder whose axis is the line c1γ0 + γ2 = b, γ1 = 0 and the radius
is Cασ . Let ω2 be the acute angle between c1γ0 + γ2 = b1 and γ0 axis on γ0γ2 hyperplane and then tanω2 = c1. To get the
equation of this cylinder, consider first the cylinder,

γ 2
1 +


γ0 −

b1
c1

2

= C2
ασ 2, (2.4)
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Fig. 3. Regions S9–S13 in {γ : γ1 ≥ 0, γ2 ≥ 0}.

whose axis is the line γ0 = b1/c1 on the γ0γ2 hyperplane and radius is Cασ . Now rotate this cylinder by an angle θ1 =
π
2 −ω2

counter clockwise about γ1 axis. To get the equation of the rotated cylinder, first consider the transformation of the system
of axis through the point (

b1
c1

, 0, 0) by an angle θ1 counter clockwise about the γ1 axis. Then by using the corresponding
rotation matrix we get,γ0 −

b1
c1

γ1
γ2

 −→

 cos θ1 0 sin θ1
0 1 0

− sin θ1 0 cos θ1

 γ0 −
b1
c1

γ1
γ2

 =




γ0 −
b1
c1


cos θ1 + γ2 sin θ1

γ1

−


γ0 −

b1
c1


sin θ1 + γ2 cos θ1

 . (2.5)

Then replacing γ0 −
b1
c1
, γ1, γ2 in (2.4) by new coordinates, the equation of the rotated cylinder is γ 2

1 + ((γ0 −
b1
c1

) cos θ1 +

γ2 sin θ1)
2

= C2
ασ 2. Since ω2 = tan−1 c1, we have sin θ1 = sin(π

2 − ω2) =
1√
1+c21

and cos θ1 = cos(π
2 − ω2) =

c1√
1+c21

, so

the equation is γ 2
1 + ( 1√

1+c21
γ2 +

c1√
1+c21

(γ0 −
b1
c1

))2 = C2
ασ 2, the boundary of the rejection region in S10.

Similarlywhen γ̂ ∈ S11, ∥γ∗
−γ̄∥

2
= ∥γ̂−(γ̂ ·v)v∥2

≥ C2
ασ 2, where v is a unit vector along the line c1γ0+d1γ1 = b1. This

produces a curved plane which has Cασ distance to the line c1γ0 + d1γ1 = b1, γ2 = 0. Here the boundary of the rejection
region is the surface of a cylinder whose axis is the line c1γ1 + d1γ1 = b1, γ2 = 0 and the radius is Cασ . Let ω1 be the acute
angle between c1γ0 + d1γ1 = b1 and γ0 axis on γ1 = 0 hyperplane and then tanω1 =

c1
d1
. With similar technique as for S10,

it can be seen that the boundary of the rejection region in S11 is γ 2
2 + (

d1√
c21+d21

γ1 +
c1√
c21+d21

(γ0 −
b1
c1

))2 = C2
ασ 2.

When γ̂ ∈ S12, ∥γ∗
− γ̄∥

2
= ∥γ̂ − (γ̂ · w)w∥

2
≥ C2

ασ 2, where w is a unit vector to the direction
−→
LB , where LB is the

projection of γ̂ onto the hyperplane c1γ0 + d1γ1 + γ2 = b1 along the vector (c1, d1, 1). This gives the hyperplane which is

parallel and has Cασ distance to the hyperplane c1γ0 + d1γ1 +γ2 = b1 given by c1γ0 + d1γ1 +γ2 = b1 +


1 + c21 + d21Cασ ,

the boundary of the rejection region in S12.
When γ̂ ∈ S13, ∥γ∗

− γ̄∥
2

= (γ̂0 −
b1
c1

)2 + γ̂ 2
1 + γ̂ 2

2 ≥ C2
ασ 2, and hence the boundary of the rejection region in S13 is

(γ0 −
b1
c1

)2 + γ 2
1 + γ 2

2 = C2
ασ 2, which is part of a sphere with center at L and radius Cασ .

Note thatCα depends onω1, ω2, so thatCα = Cα(ω1, ω2). Combining the above regions appropriately,we get the rejection
region as a combination of plane, cylindrical and spherical surfaces that envelop the G01 region. The above development is
summarized as follows.

For testing G0 versus G1 − G0 using LRT (2.3), the acceptance region is convex and the rejection region is the union of
following nine disjoint regions,

1.

γ̂0 ≥

b1
c1

+ Cασ , γ̂1 < 0, γ̂2 < 0


,

2.


γ̂0 −

b1
c1

2

+ γ̂ 2
2 ≥ C2

ασ 2, γ̂1 < 0, 0 ≤ γ̂2 <
1
c1

γ̂0 −
b1
c21


,

3.


γ̂0 −

b1
c1

2

+ γ̂ 2
1 ≥ C2

ασ 2, 0 ≤ γ̂1 <
d1
c1

γ̂0 −
b1d1
c21

, γ̂2 < 0


,
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4.


γ̂0 −

b1
c1

2

+ γ̂ 2
1 + γ̂ 2

2 ≥ C2
ασ 2, 0 ≤ γ̂1 <

d1
c1

γ̂0 −
b1d1
c21

, 0 ≤ γ̂2 <
1
c1

γ̂0 −
b1
c21


,

5.

c1γ̂0 + γ̂2 ≥ b1 +


1 + c21Cασ , γ̂1 < 0, γ̂2 ≥

1
c1

γ̂0 −
b1
c21


,

6.

c1γ̂0 + d1γ̂1 − b1 ≥


c21 + d21Cασ , γ̂1 ≥

d1
c1

γ̂0 −
b1d1
c21

, γ̂2 < 0


,

7.

γ̂ 2
1 +

 1
1 + c21

γ̂2 +
c1

1 + c21


γ̂0 −

b1
c1

2

≥ C2
ασ 2, 0 ≤ γ̂1 ≤

c1d1
1 + c21

γ̂0 +
d1

1 + c21
γ̂2 −

b1d1
1 + c21

,

γ̂2 ≥
1
c1

γ̂0 −
b1
c21

 , (2.6)

8.

γ̂ 2
2 +

 d1
c21 + d21

γ̂1 +
c1

c21 + d21


γ̂0 −

b1
c1

2

≥ C2
ασ 2, γ̂1 ≥

d1
c1

γ̂0 −
b1d1
c21

,

0 ≤ γ̂2 ≤
c1

c21 + d21
γ̂0 +

d1
c21 + d21

γ̂1 −
b1

c21 + d21

 ,

9.

c1γ̂0 + d1γ̂1 + γ̂2 − b1 ≥ Cασ


1 + c21 + d21, γ̂1 ≥ max


0,

c1d1
1 + c21

γ̂0 +
d1

1 + c21
γ̂2 −

b1d1
1 + c21


,

γ̂2 ≥ max

0,

c1d1
c21 + d21

γ̂0 +
d1

c21 + d21
γ̂1 −

b1
c21 + d21


,

where Cα = Cα(ω1, ω2), ω1 is the angle between c1γ0 + γ2 = b1 and γ2 = 0 on the γ0γ2-plane, and ω2 is the angle between
c1γ0 + d1γ1 = b1 and γ1 = 0 on the γ0γ1-plane.

2.2. Least favorable distribution

To find the least favorable distribution of χ̄2
01 in (2.3), write

Pr(LRT ≤ t) =

13
i=1

Pr(LRT ≤ t|γ̂ ∈ Si) Pr(γ̂ ∈ Si). (2.7)

It is shown in Lemma 2L in Supplement, that the least favorable null value of χ̄2
01 is attained at γ = L = (b1/c1, 0, 0).

When γ = L, γ̂ ∼ N 3(L, σ 2I) and hence the length and the direction of the γ̂ are independent. Then for each region Si,
Pr(LRT ≤ t|γ̂ ∈ Si) = Pr(LRT ≤ t), ∀t > 0.

As shown earlier, LRT = 0 for γ̂ ∈ Si, i = 1, 3, 6, 9. When γ̂ in S2, LRT = (γ̂0 −
b1
c1

)2/σ 2 is the squared length of the first

coordinate and hence LRT has a χ2
1 distribution. When γ̂ in S5, S8, LRT is ((γ̂0 −

b1
c1

)2 + γ̂ 2
2 )/σ 2 and ((γ̂0 −

b1
c1

)2 + γ̂ 2
1 )/σ 2

respectively, each of which is a summation of two squared lengths and hence each is distributed as a χ2
2 distribution. When

γ̂ ∈ S13, LRT = ((γ̂0 −
b1
c1

)2 + γ̂ 2
1 + γ̂ 2

2 )/σ 2, which is a summation of three squared lengths and hence is distributed as a χ2
3

distribution.
When γ̂ in S4, we consider a new orthogonal coordinate system, with axes along the lines γ0 − c1γ2 =

b1
c1

and
c1γ0 + γ2 = b1 on γ1 = 0 hyperplane as new γ0 and γ2 axes respectively, then the LRT given γ̂ ∈ S4 is the squared
length of one of the coordinates only, and hence is distributed as a χ2

1 distribution. Similarly when γ̂ in S7, we consider the
new orthogonal coordinate system, with axes along the lines d1γ0 − c1γ1 =

b1d1
c1

and c1γ0 + d1γ1 = b1, γ2 = 0 hyperplane
as new γ0 and γ1 axes respectively, then the LRT given γ̂ ∈ S7 is the squared length of one of the coordinates only and hence
is distributed as a χ2

1 distribution (X ∼ N 3(0, I3) if and only if PX ∼ N 3(0, I3) where P is a projection (rotation) matrix).
When γ̂ in S10, γ∗

= γ̂ and γ̄ is the projection of γ∗ onto the line c1γ0 + γ2 = b1, γ1 = 0 (i.e., γ̄ = Π(γ̂|G01)). So
LRT = ∥γ̂ − Π(γ̂|G01)∥

2/σ 2
= ∥Π(γ̂|G∗

01)∥
2/σ 2. Further the projection matrix P1 for the projection of γ̂ onto the line

c1γ0 + γ2 = b1, γ1 = 0 (on to the surface of G01) is P1 = s⊤1 s1 [22], where s1 = (−b1, 0, b1c1) is the directional vector
of the line c1γ0 + γ2 = b1, γ1 = 0. Here note that rank(P1) = 1. Further since here G01 and G∗

01 are polyhedral cones,
∥Π(γ̂|G∗

01)∥
2/σ 2

∼ χ2
3−1 ([20], p. 127) and hence the LRT given γ̂ ∈ S10 has χ2

2 distribution.
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Similarly when γ̂ in S11, γ∗
= γ̂ and γ̄ is the projection of γ∗ onto the line c1γ0 + d1γ1 = b1, γ2 = 0 (i.e., γ̄ = Π(γ̂|G01)).

So LRT = ∥γ̂ − Π(γ̂|G01)∥
2/σ 2

= ∥Π(γ̂|G∗

01)∥
2/σ 2. Further the projection matrix P2 for the projection of γ̂ onto the line

c1γ0 + d1γ1 = b1, γ2 = 0 (onto the surface of G01) is P2 = s⊤2 s2, where s2 = (−b1d1, c1d1, 0) is the directional vector of
the line c1γ0 + d1γ1 = b1, γ2 = 0. Here note that rank(P2) = 1 and then ∥Π(γ̂|G∗

01)∥
2/σ 2

∼ χ2
3−1 [20] and hence the LRT

given γ̂ ∈ S11 has χ2
2 distribution.

When γ̂ in S12, LRT = ∥γ̂ − Π(γ̂|G01)∥
2/σ 2

= ∥Π(γ̂|G∗

01)∥
2/σ 2 which is the projection of γ̂ onto the line (

b1
c1

, 0, 0) +

u(c1, d1, 1), where u is a constant. Further the projectionmatrixP3 for the projection of γ̂ onto the line (
b1
c1

, 0, 0)+u(c1, d1, 1)
(P3 is the projection matrix for the projection onto the surface of G∗

01) is P3 = s⊤3 s3, where s3 = (c1, d1, 1) is the directional
vector of the line. Here note that rank(P3) = 1 and hence ∥Π(γ̂|G∗

01)∥
2/σ 2

∼ χ2
1 [20]. Thus LRT given γ̂ ∈ S12 has χ2

1
distribution.

To find the probabilities Pr(γ̂ ∈ Si), 1 ≤ i ≤ 12, let S be a polyhedral cone in R3 which has three faces and vertex
L = (b1/c1, 0, 0). Let θ1, θ2, θ3 be the angles between the faces of S . Then Pr(γ̂ ∈ S) = (4π)−1(θ1 + θ2 + θ3 − π). (Lemma
2 in Supplement.)

Here each Si, for 1 ≤ i ≤ 12, is a polyhedral cone with three faces and vertex L. Let us denote the angles between the
faces of Si as θi,1, θi,2, θi,3.

Angles between the faces of S1 are θ1,1 = π/2 (angle between the hyperplanes γ0 = b/c1 and γ1 = 0), θ1,2 = π/2 (angle
between the hyperplanes γ0 = b/c1 and γ2 = 0), θ1,3 = π/2 (angle between the hyperplanes γ1 = 0 and γ2 = 0). Then,
using Lemma 2, Pr(γ̂ ∈ S1) = (4π)−1(π/2 + π/2 + π/2 − π) = 1/8. By following similar argument, we can see that,
Pr(γ̂ ∈ S2) = Pr(γ̂ ∈ S4) = Pr(γ̂ ∈ S7) = 1/8. Similarly, it can be shown that Pr(γ̂ ∈ S3) = (4π)−1(cos−1 1√

1+c21
), Pr(γ̂ ∈

S5) = (4π)−1(π/2 − cos−1 1√
1+c21

), Pr(γ̂ ∈ S6) = (4π)−1(cos−1 d1√
c21+d21

), Pr(γ̂ ∈ S8) = (4π)−1(π/2 − cos−1 d1√
c21+d21

),

Pr(γ̂ ∈ S9) = (4π)−1(cos−1 1√
1+c21+d21

+ cos−1 d1√
1+c21+d21

− π/2), Pr(γ̂ ∈ S10) = (4π)−1(cos−1
√

1+c21√
1+c21+d21

), Pr(γ̂ ∈ S11) =

(4π)−1(cos−1
√

c21+d21√
1+c21+d21

), Pr(γ̂ ∈ S12) = (4π)−1(cos−1 d1√
(1+c21 )(c21+d21)

), and finally, Pr(γ̂ ∈ S13) is found by subtraction

from 1.
Collecting all these results and substituting in (2.7), we get the least favorable null value of χ̄2

01 in (2.3) is attained at
γ = L = (b1/c1, 0, 0) and,

sup
γ∈G01

Prγ{γ̂ : ∥γ̄ − γ∗
∥ ≥ Cασ } = PrL{γ̂ : ∥γ̄ − γ∗

∥ ≥ Cασ }. (2.8)

The least favorable null distribution of LRT is

Pr(LRT ≤ t|γ̂ = L) =

3
i=0

wi Pr(χ2
i ≤ t), (2.9)

where,

w0 = (4π)−1

cos−1 1
1 + c21

+ cos−1 d1
c21 + d21

+ cos−1 1
1 + c21 + d21

+ cos−1 d1
1 + c21 + d21

 ,

w1 = (4π)−1

3π
2

− cos−1 d1
(1 + c21 )(c

2
1 + d21)

 ,

w2 = (4π)−1

π + cos−1


1 + c21

1 + c21 + d21
+ cos−1


c21 + d21

1 + c21 + d21
− cos−1 1

1 + c21
− cos−1 d1v

c21 + d21

 ,

w3 = (4π)−1

3π
2

− cos−1


1 + c21

1 + c21 + d21
− cos−1


c21 + d21

1 + c21 + d21
− cos−1 1

1 + c21 + d21

− cos−1 d1
1 + c21 + d21

− cos−1 d1
(1 + c21 )(c

2
1 + d21)

 .

(2.10)

The result in (2.8) follows using standard techniques. It can be seen w0 + w2 = w1 + w3 =
1
2 holds as well, with

trigonometric calculations, as expected. The values of Cα derived from (2.9) are given in Table S1 (in Supplement).



140 T.B. Peiris, B. Bhattacharya / Journal of Multivariate Analysis 151 (2016) 133–150

Fig. 4. Left. Region H01 and the rejection region of modified LRT of test (3.2). Right. Two dimensional view of the regions S1–S4 from the positive direction
of γ0 when γ0 =

b′
1
c1
.

Fig. 5. Two-dimensional views of the rejection region of the LRT of (3.3), L′
= (

b′
1
c1

, 0, 0). Left: From the positive direction of γ1 when γ1 = 0. Right: From
positive direction of γ2 when γ2 = 0.

3. Test in reverse direction of (2.1)

3.1. Rejection region when x01 > 0, x02 > 0

We now consider the hypotheses,
H0 : β0 + β1x01 + β2x02 ≥ u, β1 ≥ 0, β2 ≥ 0, H1 : β1 ≥ 0, β2 ≥ 0, (3.1)

for some u ∈ R and test H0 against H1 − H0. Define b′

1 =
Sx2
x02

u ∈ R. The hypotheses in (3.1) can be written as,

H01 : γ2 ≥ b′

1 − c1γ0 − d1γ1, γ1 ≥ 0, γ2 ≥ 0, H1 : γ1 ≥ 0, γ2 ≥ 0. (3.2)
The regionH01 inγ space is nowbounded by the faces {c1γ0+d1γ1+γ2 = b′

1, γ1 ≥ 0, γ2 ≥ 0}, {γ1 = 0, c1γ0+d1γ1+γ2 ≥

b′

1, γ2 ≥ 0}, and {γ2 = 0, c1γ0 + d1γ1 + γ2 ≥ b′

1, γ1 ≥ 0} (see Fig. 4). The LRT rejects H01 for large values of the test statistic,

χ̄2
02 ≡ −2 logΛ = (∥γ̂ − γ̄∥

2
− ∥γ̂ − γ∗

∥
2)/σ 2. (3.3)

Let {∥γ̂ − γ̄∥
2
−∥γ̂ − γ∗

∥
2 > D2

ασ 2
} be the rejection region for a level α test for some critical value Dα then Fig. 5 shows

two dimensional views of the rejection regionwhen γ1 = 0 and γ2 = 0 respectively (three dimensional picture looksmessy
here, hence omitted).

We show in the Supplement (Lemma 3) that the least favorable null value of LRT (3.3) is attained at limt→∞,s→∞(b′

1/c1 −

s − c1t, c1t, c1s) and,
sup

γ∈H01

Prγ{γ̂ : ∥γ̂ − γ̄∥
2
− ∥γ̂ − γ∗

∥
2

≥ D2
ασ 2

} = lim
t→∞,s→∞

Pr(b′
1/c1−s−c1t,c1t,c1s){χ̄

2
02 > D2

α}.

Further when supγ∈H01
is attained, the null critical value is D2

α = χ2
1,α (i.e. Dα = Zα).
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Next we consider a less restricted version of (3.2).

3.2. An unrestricted test

Ignoring the order restrictions γ1 ≥ 0, γ2 ≥ 0 in (3.2), consider the hypotheses

M01 : c1γ0 + d1γ1 + γ2 ≥ b′

1, M1 : c1γ0 + d1γ1 + γ2 < b′

1. (3.4)

The region M01 is now bounded by the face c1γ0 + d1γ1 + γ2 = b′

1 (see Fig S1 for region M01, and the rejection
region of (3.4), and Fig S2 for its two dimensional views in Supplement) and the LRT rejects M01 for small values of
χ03 =

c1γ̂0+d1γ̂1+γ̂2−b′
1√

1+c21+d21σ
. For level α, its rejection region is {γ̂ : χ03 < −Zασ }, which is simplified as

c1γ̂0 + d1γ̂1 + γ̂2 < b′

1 −


1 + c21 + d21Zασ . (3.5)

When γ̂ ∈ H1 − H01, γ̂ = γ∗ and then the restricted test in (3.3) is χ̄2
02 = ∥γ∗

− γ̄∥
2/σ 2 simplifies as χ2

03. The boundary
of its rejection region is ∥γ∗

− γ̄∥
2

= ∥γ̂ − (γ̂ · w)w∥
2

= D2
ασ 2, where w is a unit vector to the direction

−→
LB , where LB is

the projection of γ̂ onto the hyperplane c1γ0 + d1γ1 + γ2 = b′

1. This gives a hyperplane which is parallel to and has Dασ
distance to the hyperplane c1γ0 + d1γ1 + γ2 = b′

1 and is given by

c1γ0 + d1γ1 + γ2 = b′

1 −


1 + c21 + d21Dασ , (3.6)

which is the boundary of (3.5) since Dα = Zα . Thus the restricted and unrestricted tests have the same boundary. But this is
not the case when γ̂ ∉ H1.

In fact, the rejection region of the unrestricted LRT (3.4) contains that of the restricted LRT, which creates a philosophical
dilemma when γ̂ is in some specific regions. To construct a modified rejection region which avoids the philosophical
dilemma, we consider a partition of R3 as follows.

First note that the boundary ofH01, c1γ0 +d1γ1 +γ2 = b′

1 meets hyperplane γ2 = 0 on the line c1γ0 +d1γ1 = b′

1, γ2 = 0

and hyperplane γ1 = 0 on the line c1γ0 + γ2 = b′

1, γ1 = 0. Hyperplanes c1γ0 + d1γ1 + γ2 = b′
−


1 + c21 + d21Zασ

(line BC in Fig. 4 (right) when γ0 = b′

1/c1) and c1γ0 + d1γ1 = b′

1 (γ1 = 0 when γ0 = b′

1/c1) intersect on the hyperplane

γ̂2 = −


1 + c21 + d21Zασ (line CD in Fig. 4 (right) is the two dimensional view when γ0 =

b′

c1
). Similarly, hyperplanes

c1γ0 + d1γ1 + γ2 = b′

1 −


1 + c21 + d21Zασ and c1γ0 + γ2 = b′

1 (γ2 = 0 when γ0 = b′

1/c1) intersect on the hyperplane

γ1 = −
1
d1


1 + c21 + d21Zασ (line AB in Fig. 4 (right) is the two dimensional view when γ0 =

b′
1
c1
).

The equation of the hyperplane passing through points B = (
b′
1
c1

, − 1
d1


1 + c21 + d21Zασ , 0) and C = (

b′
1
c1

, 0,

−


1 + c21 + d21Zασ) and orthogonal to hyperplane γ0 =

b′
1
c1

is γ2 = −d1γ1 −


1 + c21 + d21Zασ (line BC in Fig. 4 (right) is

the two dimensional view when γ0 =
b′
1
c1
).

Using these boundaries, we define S1 = R3
− S2 ∪ S3 ∪ S4, S2 = {γ : γ1 ≤ −

1
d1


1 + c21 + d21Zασ , γ2 ≥ 0},

S3 = {γ : γ1 < 0, γ2 < min{0, −d1γ1 −


1 + c21 + d21Zασ }}, and S4 = {γ : γ1 ≥ 0, γ2 ≤ −


1 + c21 + d21Zασ }.

Fig. 4 (right) shows a two dimensional view of above four disjoint regions when γ0 = b′

1/c1. Note that S1–S4 are different
from those in Section 2.

Now note that when γ̂ ∈ S2 ∩ {b′
− c1γ0 ≤ γ2 < b′

1 − c1γ0 − d1γ1 −


1 + c21 + d21Zασ }, H01 is rejected even though

γ∗
∈ H01. Similar areas are present in S3 and in S4 which result in the same dilemma.

3.3. Construction of a modified test

We propose a modification of the rejection region of the restricted LRT as follows. We still use the boundary of the
rejection region of the unrestricted test when γ̂ ∈ S1. Since the hyperplane (3.6) and boundary of the region S2 (γ1 =

−
1
d1


1 + c21 + d21Zασ ) intersect on the plane c1γ0 + γ2 = b′

1, γ1 = −
1
d1


1 + c21 + d21Zασ , we propose c1γ0 + γ2 = b′

1

as the boundary of the rejection region when γ̂ ∈ S2. Similarly, since hyperplane (3.6) and the boundary of the region S4
(γ2 = −


1 + c21 + d21Zασ ) intersect on the plane c1γ0+d1γ1 = b′

1, γ2 = −


1 + c21 + d21Zασ , we propose c1γ0+d1γ1 = b′

1

as the boundary of the rejection region when γ̂ ∈ S4. Since hyperplane (3.6) and the boundary of the region S3 (γ2 =
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Fig. 6. Two 2-dimensional views of the modified rejection region. Left: From the positive direction of γ1 when γ1 = 0, and, Right: From positive direction

of γ2 when γ2 = 0. L′
= (

b′
1
c1

, 0, 0). Compare with Fig. 5.

−d1γ1 −


1 + c21 + d21Zασ , γ0 =

b′
1
c1
) intersect on the line γ2 = −d1γ1 −


1 + c21 + d21Zασ , γ0 =

b′
1
c1
, we propose γ0 =

b′
1
c1

as the boundary of the rejection region when γ̂ ∈ S3. All the hyperplanes meet together in boundary.
So we reject H01 at level α when,

1. c1γ̂0 + γ̂2 ≤ b′

1 if γ̂1 ≤
−1
d1


1 + c21 + d21Zασ , γ̂2 ≥ 0,

2. c1γ̂0 + d1γ̂1 ≤ b′

1 if γ̂1 ≥ 0, γ̂2 ≤ −


1 + c21 + d21Zασ ,

3. γ̂0 <
b′

1

c1
if γ̂1 ≤ 0, γ̂2 ≤ min{0, −d1γ̂1 −


1 + c21 + d21Zασ }, and,

4. γ̂0 + d1γ̂1 + γ̂2 ≤ b′

1 −


1 + c21 + d21Zασ , otherwise.

(3.7)

Fig. 4 (left) shows the boundary of the corresponding rejection region and Fig. 6 shows two 2-dimensional views of the
boundary of the rejection region when γ1 = 0 and γ2 = 0 respectively. When x01 < 0 and x02 < 0, the boundaries of the
rejection regions are obtained by inverting the boundary of the rejection regions of tests (2.2) and (3.2) (see [17]).

4. Rejection regions for mixed signs

The mixed sign case does not arise for one predictor.

4.1. Hypothesis (2.1) when x01 > 0 and x02 < 0

Let l, u ∈ R, b2 =
lSx2
x02

∈ R, c2 =
Sx2

x02
√
n < 0 and d2 =

x01Sx2
x02Sx1

< 0. Now the hypotheses in (2.1) in terms of γ are,

G03 : γ2 ≥ b2 − c2γ0 − d2γ1, γ1 ≥ 0, γ2 ≥ 0 and G1 : γ1 ≥ 0, γ2 ≥ 0. (4.1)

The region G03 is bounded by the faces {c2γ0 +d2γ1 +γ2 = b2, γ1 ≥ 0, γ2 ≥ 0}, {γ1 = 0, c2γ0 +d2γ1 +γ2 ≤ b2, γ2 ≥ 0},
and {γ2 = 0, c2γ0 + d2γ1 + γ2 ≥ b2, γ1 ≥ 0} (see Fig. 7). The LRT rejects G03 for large values of the test statistic,

χ̄2
04 ≡ −2 log3 = (∥γ̂ − γ̄∥

2
− ∥γ̂ − γ∗

∥
2)/σ 2. (4.2)

Let {∥γ̂ − γ̄∥
2
− ∥γ̂ − γ∗

∥
2 > E2

ασ 2
} be the rejection region for a level α test for some critical value Eα . When γ̂2 ≥ 0,

the rejection region {∥γ̂ − γ̄∥
2/σ 2

≥ Eα} is a union of three disjoint regions, as in (4.6), except replacing critical value of Eα

in place of Fα .
When γ̂2 ≥ 0, the boundary of this rejection region is same as that in Fig. 7.When γ̂2 < 0, the rejection region of χ̄2

04 does
not yield simplified expressions. The three-dimensional picture is also messy here. Fig. 8 gives two two-dimensional views
of G03 and the rejection region for this case. We show in the supplement (Lemma 4) that the null least favorable distribution
of LRT in (4.2) is attained at limγ0→∞(γ0, 0, b2 − c2γ0), that is,

sup
γ∈G03

Prγ{γ̂ : ∥γ̂ − γ̄∥
2
− ∥γ̂ − γ∗

∥
2

≥ E2
ασ 2

} = lim
γ0→∞

Pr(γ0,0,b2−c2γ0){χ̄
2
04 > E2

ασ 2
}.
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Fig. 7. Region G03 and the modified rejection region RR2 of test (4.1).

Fig. 8. Two dimensional views of the rejection region of LRT of (4.2) Left: On the hyperplane γ2 = γ20 from the positive direction of γ2 , and Right: From
the positive direction of γ1 when γ1 = 0. Here L3 = (b2/c2, 0, 0).

Further the null least favorable distribution of LRT is,

sup
γ∈G03

Pr(LRT ≥ c) =


1
4

+
θ1

2π


P


χ2
0 ≥ c


+

1
2
P(χ2

1 ≥ c) +


1
4

−
θ1

2π


P(χ2

2 ≥ c), (4.3)

where θ1 is the angle between the hyperplanes c2γ0 + d2γ1 + γ2 = b2 and γ1 = 0.

4.2. Hypothesis (4.1) without the restriction γ2 ≥ 0

Now consider the LRT forM02 versus M12 − M02, where

M02 : γ2 ≥ b2 − c2γ0 − d2γ1, γ1 ≥ 0 and M12 : γ1 ≥ 0. (4.4)

The region M02 is now bounded by the faces {c2γ0 + d2γ1 + γ2 ≥ b2, γ1 = 0} and {γ1 ≥ 0, c2γ0 + d2γ1 + γ2 = 0}. The
LRT rejectsM02 for large values of

χ̄2
05 = (∥γ̂ − ¯̄γ∥

2
− ∥γ̂ − γ∗∗

∥
2)/σ 2

= ∥γ∗∗
− ¯̄γ∥

2/σ 2, (4.5)

where ¯̄γ and γ∗∗ are the MLEs underM02 andM12 respectively. Compare with (4.2).
Depending on the sign of γ̂1 and hyperplanes of interest, we divide R3 into five regions and calculate the test statistic χ̄2

05
in (4.5) for each region separately. Finally we combine these regions to yield (4.6).

The hyperplanes c2γ0 + d2γ1 + γ2 = b2 and γ1 = 0 intersect on the line c2γ0 + γ2 = b2, γ1 = 0. So we use hyperplane
c2γ0 + γ2 = b2 in R3 to divide the region {γ : γ1 < 0} into two disjoint regions (see Fig. 9, left) as S1 ⊎ S2, where
S1 = {γ : γ1 < 0, c2γ0 + γ2 ≥ b2}, S2 = {γ : γ1 < 0, c2γ0 + γ2 < b2}. Call c2γ0 + γ2 = b2, γ1 = 0 as the center axis; a line
in R3 space (note that the regions Si’s are different from those in Sections 2 and 3).
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Then from (4.5), when γ̂ ∈ S1, ∥γ∗∗
− ¯̄γ∥

2
= ∥(γ̂0, 0, γ̂2) − (γ̂0, 0, γ̂2)∥

2
= 0. When γ̂ ∈ S2, the rejection region is

∥γ∗∗
− ¯̄γ∥

2
= ∥(γ̂0, 0, γ̂2) − ((γ̂0, 0, γ̂2) · u)u∥

2
≥ F 2

ασ 2, where u is a unit vector along the center axis, for some critical
value Fα . This gives the plane which is parallel and has Fασ distance to the hyperplane c2γ0 + γ2 = b2, the equation of the

hyperplane is c2γ0 + γ2 = b2 −


1 + c22Fασ . So the boundary of the rejection region in S2 is c2γ0 + γ2 = b2 −


1 + c22Fασ

(line GC in Fig. 9 (right) is the two dimensional view when γ2 = 0).
Next, the equation of the hyperplane which is orthogonal to c2γ0 + d2γ1 + γ2 = b2 and contains the line c2γ0 + γ2 =

b2, γ1 = 0 (center axis) is c2d2γ0 − (1 + c22 )γ1 + d2γ2 = b2d2. Using this hyperplane, and c2γ0 + d2γ1 + γ2 = b2, we divide
the region {γ : γ1 ≥ 0} into three regions (see Fig. 9, left) as γ̂ ∈ {γ : γ1 ≥ 0} = S3 ⊎ S4 ⊎ S5 such that

S3 =


γ : 0 ≤ γ1 <

c2d2
1 + c22

γ0 +
d2

1 + c22
γ2 −

b2d2
1 + c22


,

S4 =


γ : γ1 ≥

c2d2
1 + c22

γ0 +
d2

1 + c22
γ2 −

b2d2
1 + c22

, γ1 ≥
b2
d2

−
c2
d2

γ0 −
1
d2

γ2


,

and

S5 =


γ : 0 ≤ γ1 <

b2
d2

−
c2
d2

γ0 −
1
d2

γ2


.

When γ̂ ∈ S3, ∥γ∗∗
− ¯̄γ∥

2
= ∥γ̂ − (γ̂ · u)u∥

2
≥ F 2

ασ 2, u is a unit vector along the center axis. This produces the surface
of a cylinder with center axis as its axis and radius Fασ . Then, using transformed coordinates (as done for S10 in (2.5)), the
boundary of the rejection region in S3 is γ 2

1 + ( 1√
1+c22

γ2 +
c2√
1+c22

(γ0 −
b2
c2

))2 = F 2
ασ 2 (curve CF in Fig. 9 (right) is the two

dimensional view).
When γ̂ ∈ S4, ∥γ∗∗

− ¯̄γ∥
2

= ∥γ̂ − (γ̂ · w)w∥
2

≥ F 2
ασ 2, where w is a unit vector to the direction

−→
LB , where LB

is the projection of γ̂ onto the hyperplane c2γ0 + d2γ1 + γ2 = b2 along the vector (c, d, 1). This gives the hyperplane
which is parallel and has Fασ distance to hyperplane c2γ1 + d2γ1 + γ2 = b2. Then the boundary of the rejection region

in S4 is c2γ0 + d2γ1 + γ2 = b2 −


1 + c22 + d22Fασ (line FE in Fig. 9 (right) is the two dimensional view). When γ̂ ∈ S5,

∥γ∗∗
− ¯̄γ∥

2
= ∥γ̂ − γ̂∥

2
= 0.

Collecting all the above results, we get the boundary of the rejection region as a combination of three surfaces as stated
below.

Let {γ̂ : ∥ ¯̄γ − γ∗∗
∥ > Fασ } be the rejection region for a level α-test, for testingM02 vsM12 −M02, for some critical value

Fα , then the acceptance region is convex and the boundary of the rejection region is union of the following three disjoint
regions (see Fig. 10 left),

1. c2γ̂0 + γ̂2 ≤ b2 −


1 + c22Fασ , γ̂1 < 0,

2. γ̂ 2
1 +

 1
1 + c22

γ̂2 +
c2

1 + c22


γ̂0 −

b2
c2

2

≥ F 2
ασ 2, 0 ≤ γ̂1 ≤

c2d2
1 + c22

γ̂0 +
d2

1 + c22
γ̂2 −

b2d2
1 + c22

,

3. c2γ̂0 + d2γ̂1 + γ̂2 ≤ b2 − Fασ


1 + c22 + d22, γ̂1 ≥ max


0,

c2d2
1 + c22

γ̂0 +
d2

1 + c22
γ̂2 −

b2d2
1 + c22


.

(4.6)

4.3. Construction of modified test of hypotheses (4.1)

Following a similar argument as of the first part of the proof of the Lemma 4 in Supplement, it follows that the least
favorable distribution of the LRT for test (4.4) is attained on the center axis (c2γ0 + γ2 = b2, γ1 = 0) and also the least
favorable distribution of the LRT (4.5) is same as that of the LRT for test (4.1) (i.e., Eα = Fα). So boundaries of the rejection
region for the LRT for test (4.1) and that of the LRT for test (4.4) are same in (R × R × R+) space and the rejection region
for (4.4) contains the rejection region for (4.1) in (R × R × R−) space. So the LRT for test (4.4) is more powerful than the
restricted LRT for the hypothesis (4.1). But this creates another philosophical dilemma when γ̂ is in some specific regions.

To identify those regions, note that the boundary of (4.1) and (4.4) is same when γ̂1 < 0, γ̂2 > 0, which is c2γ0 + γ2 =

b2 −


1 + c22Eασ . Also note that when γ̂2 < 0, γ̂0 <

b2
c2
, then γ∗

∈ G03 causing the philosophical dilemma. To avoid

it, since c2γ0 + γ2 = b2 −


1 + c22Eασ intersects with γ0 =

b2
c2

at γ2 = −


1 + c22Eασ , we divide R3 into two regions

T1 = {γ̂ : γ̂2 ≥ −


1 + c22Eασ } and T2 = {γ̂ : γ̂2 < −


1 + c22Eασ }. Recall the regions S1 −S5 from Section 4.2. When using

χ̄2
04 in (4.2), note that for γ̂ in S2 ∩ T2, S3 ∩ T2 or S4 ∩ T2, G03 is rejected even though γ∗, restricted MLE under G13 is in G03.



T.B. Peiris, B. Bhattacharya / Journal of Multivariate Analysis 151 (2016) 133–150 145

Fig. 9. Left. Regions S1–S5 . Two sides of S4 are perpendicular. Center axis is c2γ0 + γ2 = b2, γ1 = 0. Right. Two dimensional view when γ2 = 0 of the
regions S1–S5 and the rejection region of LRT of (4.4).

Fig. 10. Left. Region M02 and the rejection region of LRT of (4.4). Right. Region H03 and the rejection region of modified LRT of test (4.8).

So we propose a modification of the rejection region of the LRT of (4.1) as follows. When γ̂2 ≥ −


1 + c22Eασ , we keep

the same boundary of the LRT for test (4.4).

When γ̂2 < −


1 + c22Eασ , hyperplanes c2γ0 + γ2 = b2 −


1 + c22Eασ and γ2 = −


1 + c22Eασ intersect on the line

(
b2
c2

, 0, −

1 + c22Eασ) + m(0, 1, 0), where m is a constant. So we propose the hyperplane γ0 =

b2
c2
, as the boundary of the

rejection region when γ̂ ∈ (S1 ∪ S2) ∩ T2 (see Figs. 7 and 9 (left)).

Also the cylinder γ 2
1 + ( 1√

1+c22
γ2 +

c2√
1+c22

(γ0 −
b2
c2

))2 = E2
ασ 2 and the hyperplane γ2 = −


1 + c22Eασ intersect on the

ellipse γ 2
1

(Eασ)2
+

(γ0−(
b2
c2

+

√
1+c22
c2

Eασ))2

(

√
1+c22
c2

Eασ)2
= 1, γ2 = −


1 + c22Eασ . So we propose the curved plane (ellipsoid), which is parallel

to γ2 axis and contains the above ellipse, as the boundary of the rejection region when γ̂ ∈ S3 ∩ T2 (see Figs. 7 and 9 (left)).

Further note that hyperplanes c2γ0 + d2γ1 + γ2 = b2 −


1 + c22 + d22Fασ and γ2 = −


1 + c22Eασ intersect on the line

c2γ0 + d2γ1 = b2 − (


1 + c22 + d22 −


1 + c22 )Eασ , γ2 = −


1 + c22Eασ . So we propose the hyperplane which is parallel

to γ2 axis and contains the above line, c2γ0 + d2γ1 = b2 − (


1 + c22 + d22 −


1 + c22 )Eασ as the boundary of the rejection

region when γ̂ ∈ (S4 ∪ S5) ∩ T2 (see Figs. 7 and 9 (left)).
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So we propose a modified test for testing G03 in (4.1), where we reject G03 at level α when

1. γ̂0 >
b2
c2

if γ̂1 < 0, and γ̂2 < −


1 + c22Eασ ,

2. c22 (γ̂0 − (b2/c2 +


1 + c22/c2Eασ))2 + (1 + c22 )γ̂

2
1 ≥ (1 + c22 )E

2
ασ 2,

if 0 ≤ γ̂1 <
c2d2

1 + c22
γ̂0 +

d2
1 + c22

γ̂2 −
b2d2
1 + c22

and γ̂2 < −


1 + c22Eασ ,

3. c2γ̂0 + d2γ̂1 ≤ b2 − (


1 + c22 + d22 −


1 + c22 )Eασ

if γ̂1 ≥ max

0,

c2d2
1 + c22

γ̂0 +
d2

1 + c22
γ̂2 −

b2d2
1 + c22


and γ̂2 < −


1 + c22Eασ ,

4. c2γ̂0 + γ̂2 ≤ b2 −


1 + c22Eασ , if γ̂1 < 0 and γ̂2 ≥ −


1 + c22Eασ ,

5. γ̂ 2
1 +

 1
1 + c22

γ̂2 +
c2

1 + c22
(γ̂0 − b2/c2)

2

≥ E2
ασ 2,

if 0 < γ̂1 ≤
c2d2

1 + c22
γ̂0 +

d2
1 + c22

γ̂2 −
b2d2
1 + c22

and γ̂2 ≥ −


1 + c22Eασ ,

6. c2γ̂0 + d2γ̂1 + γ̂2 ≤ b2 −


1 + c22 + d22Eασ ,

if γ̂1 ≥ max

0,

c2d2
1 + c22

γ̂0 +
d2

1 + c22
γ̂2 −

b2d2
1 + c22


and γ̂2 ≥ −


1 + c22Eασ .

(4.7)

4.4. Hypothesis (3.1) when x01 > 0 and x02 < 0

Let b′

2 =
uSx2
x02

∈ R. Now the test (3.1) in terms of γ is,

H03 : 0 ≤ γ2 < b′

2 − c2γ0 − d2γ1, γ1 ≥ 0, and H1 : γ1 ≥ 0, γ2 ≥ 0. (4.8)

The regionH03 is bounded by the faces {c2γ0 +d2γ1 +γ2 = b′

2, γ1 ≥ 0, γ2 ≥ 0}, {γ1 = 0, c2γ0 +d2γ1 +γ2 ≥ b′

2, γ2 ≥ 0},
and {γ2 = 0, c2γ0 + d2γ1 + γ2 ≤ b′

2, γ1 ≥ 0}. The LRT rejects H03 for large values of the test statistic,

χ̄2
06 ≡ −2 log3 = (∥γ̂ − γ̄∥

2
− ∥γ̂ − γ∗

∥
2)/σ 2. (4.9)

Let {∥γ̂ − γ̄∥
2
−∥γ̂ −γ∗

∥
2 > K 2

ασ 2
} be the rejection region for a level α test for some critical value Kα . The least favorable

null value of LRT in (4.9) is attained at limγ0→−∞(γ0,
b′
2−c2γ0
d2

, 0),

sup
γ∈H03

Prγ{γ̂ : ∥γ̂ − γ̄∥
2
− ∥γ̂ − γ∗

∥
2

≥ K 2
ασ 2

} = lim
γ0→−∞

Pr
γ0,

b′2−c2γ0
d2

,0
{χ̄2

01 > K 2
ασ 2

}.

Further the least favorable distribution of LRT is,

Pr(LRT ≤ c) =


1
4

+
θ2

2π


P(χ2

0 ≤ c) +
1
2
P(χ2

1 ≤ c) +


1
4

−
θ2

2π


P(χ2

2 ≤ c), (4.10)

where θ2 is the acute angle between two hyperplanes c2γ0 + d2γ1 + γ2 = b′

2 and γ2 = 0.

4.5. Ignoring the restriction γ1 ≥ 0 in (4.8)

Ignoring the restriction γ1 ≥ 0 in (4.8), consider the test forM03 versusM13 − M03, where

M03 : 0 ≤ γ2 < b′

2 − c2γ0 − d2γ1, M13 : γ2 ≥ 0. (4.11)

The regionM03 is now bounded by the faces c2γ0 + γ2 = b2 and γ2 = 0 and LRT rejectsM03 for large values of

χ̄2
07 = (∥γ̂ −

¯̄γ̄∥
2
− ∥γ̂ − γ∗∗∗

∥
2)/σ 2

= ∥γ∗∗∗
−

¯̄γ̄∥
2/σ 2, (4.12)

where ¯̄γ̄, γ∗∗∗ are the MLEs under M03 and M13 respectively. Fig. S3 in Supplement shows region M03, the rejection region
of LRT of (4.11), and its two dimensional view.
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Let {γ̂ : ∥
¯̄γ̄ − γ∗∗∗

∥ > Lασ } be the rejection region for a level α-test, for testing M03 vs M13 − M03, for some critical
value Lα , then the acceptance region is convex and the boundary of the rejection region is union of following three disjoint
regions,

1. c2γ0 + d2γ1 ≤ b′

2 +


c22 + d22Lασ , γ2 < 0,

2. γ 2
2 + (

d2√
c22+d22

γ1 +
c2√
c22+d22

(γ0 −
b′
2
c2

))2 ≥ L2ασ 2, 0 ≤ γ2 ≤
c2

c22+d22
γ0 +

d2
c22+d22

γ2 −
b′
2

c22+d22
,

3. c2γ0 + d2γ1 + γ2 ≥ b′

2 + Lασ


1 + c22 + d22, γ2 ≥ max{0, c2

c22+d22
γ0 +

d2
c22+d22

γ2 −
b′
2

c22+d22
}.

4.6. Construction of a modified test for (4.8)

The least favorable distribution of LRT for test (4.11) is attained on the line c2γ0 + d2γ1 = b′

2, γ2 = 0. Also, the least
favorable distribution of LRT for test (4.11) is same as that of LRT for test (4.8) (i.e., Kα = Lα). So boundaries of the rejection
region for the LRT for test (4.8) and that of the LRT for test (4.11) are same in (R × R+

× R) space and rejection region for
(4.8) contains the rejection region for (4.11) in (R × R−

× R) space creating philosophical dilemma.

To identify those regions note that the hyperplanes c2γ0+d2γ1 = b′

2+


c22 + d22Kασ (boundary of the rejection region of

the unrestricted test (4.12) when γ̂2 < 0) and γ0 =
b′
2
c2

intersect at γ1 =
1
d2


c22 + d22Kασ . Also when γ̂1 < 1

d2


c22 + d22Kασ ,

there is a γ̂ in rejection regionwith γ∗ (MLE of γ̂ underH1) is inH0. So when γ̂1 < 1
d2


c22 + d22Kασ there are γ̂ which creates

philosophical dilemma.
Consider the regions: U1 = {γ : γ2 < 0, c2γ0 + d2γ1 < b′

2},U2 = {γ : γ2 < 0, c2γ0 + d2γ1 ≥ b′

2},U3 = {γ : 0 ≤ γ2 <
c2

c22+d22
γ0 +

d2
c22+d22

γ1 −
b′
2

c22+d22
},U4 = {γ : γ2 ≥

c2
c22+d22

γ0 +
d2

c22+d22
γ1 −

b2
c22+d22

, γ2 ≥ b′

2 − c2γ0 − d2γ1},U5 = {γ : 0 ≤ γ2 <

b′

2 − c2γ0 − d2γ1}.

Dividing R3 into V1 = {R3
: γ1 ≥

1
d2


c22 + d22Kασ } and V2 = {R3

: γ1 < 1
d2


c22 + d22Kασ }, we note that when γ̂ is in

U2 ∩ V2, U3 ∩ V2 or U4 ∩ V2, using χ̄2
06, H03 is rejected even though γ∗, restricted MLE under H13 is in H03.

So we propose modification of LRT χ̄2
06 as follows (see Fig. 10 right). We still use the boundary of the LRT for test (4.11)

for the LRT of test (4.8) when γ̂1 ≥
1
d2


c22 + d22Kασ .

When γ̂1 < 1
d2


c22 + d22Kασ , note that hyperplanes c2γ0+d2γ1 = b′

2+


c22 + d22Kασ and γ1 =

1
d2


c22 + d22Kασ intersect

on the line γ0 =
b′
2
c2

, γ1 =
1
d2


c22 + d22Kασ . So we propose the hyperplane γ0 =

b′
2
c2
, which is parallel to γ1 axis and contains

the line γ0 =
b′
2
c2

, γ1 =
1
d2


c22 + d22Kασ as the boundary of the rejection region when γ̂ ∈ (U1 ∪ U2) ∩ V2.

Also the cylinder γ 2
2 + (

d2√
c22+d22

γ1 +
c2√
c22+d22

(γ0 −
b′
2
c2

))2 = K 2
ασ 2 and the hyperplane γ1 =

1
d2


c22 + d22Kασ intersect

on the ellipse γ 2
2

(Kασ)2
+

(γ0−(
b′2
c2

−

√
c22+d22
c2

Kασ))2

(

√
c22+d22
c2

Kασ)2
= 1, γ1 =

1
d2


c22 + d22Kασ . So we propose the curved plane (ellipsoid),

which is parallel to γ1 axis and contains the above ellipse as the boundary of the rejection region when γ̂ ∈ U3 ∩ V2.

Further note that hyperplanes c2γ0 + d2γ1 + γ2 = b′

2 +


1 + c22 + d22Kασ and γ1 =

1
d2


c22 + d22Kασ intersect on the line

c2γ0 + γ2 = b′

2 + (


1 + c22 + d22 −


c22 + d22)Kασ , γ1 =

1
d2


c22 + d22Kασ . So we propose the hyperplane which is parallel

to the γ1 axis and contains the above line as the boundary of the rejection region when γ̂ ∈ (U4 ∪ U5) ∩ V2 (see Fig. 14,
supplement). So we reject H03 at level α when,

1. γ̂0 ≤
b′

2

c2
if γ̂1 <

1
d2


c22 + d22, and γ̂2 < 0,

2. c22 (γ̂0 − (b′

2/c2 −


c22 + d22/c2Kασ))2 + (c22 + d22)γ̂

2
2 ≥ (c22 + d22)K

2
ασ 2,

if γ̂1 <
1
d2


c22 + d22 and 0 ≤ γ̂2 <

c2
c22 + d22

γ̂0 +
d2

c22 + d22
γ̂2 −

b′

2

c22 + d22
,

3. c2γ0 + γ2 ≥ b′

2 + (


1 + c22 + d22 −


c22 + d22)Kασ ,

if γ̂1 <
1
d2


c22 + d22 and γ̂2 ≥

c2
c22 + d22

γ̂0 +
d2

c22 + d22
γ̂2 −

b′

2

c22 + d22
,
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4. c2γ̂0 + d2γ̂1 ≤ b′

2 if γ̂1 ≥
1
d2


c22 + d22, and γ̂2 < 0, (4.13)

5. γ̂ 2
2 +

 d2
c22 + d22

γ̂1 +
c2

c22 + d22
(γ̂0 − b′

2/c2)

2

≥ K 2
ασ 2

if γ̂1 ≥
1
d2


c22 + d22 and 0 ≤ γ̂2 <

c2
c22 + d22

γ̂0 +
d2

c22 + d22
γ̂2 −

b′

2

c22 + d22
,

6. c2γ̂0 + d2γ̂1 + γ̂2 ≥ b2 +


1 + c22 + d22Kασ ,

if γ̂1 ≥
1
d2


c22 + d22, and γ̂2 ≥

c2
c22 + d22

γ̂0 +
d2

c22 + d22
γ̂2 −

b′

2

c22 + d22
.

The situation of x01 < 0, x02 > 0 can be derived by mirror images of x01 > 0, x02 < 0.

5. Confidence interval for β0 + β1x01 + β2x02

The rejection region for all cases can be expressed in original variables (see [17]). We define a (1 − α)100% confidence
interval [L,U] for the regression function at a given point (x01, x02) by inverting the tests (2.2) and (3.1): L = min{l|G0 :

β0 + β1x01 + β2x02 ≤ l, β1 ≥ 0, β2 ≥ 0 is accepted at level α/2 against G1 − G0}, U = max{u|H0 : β0 + β1x01 + β2x02 ≥

u, β1 ≥ 0, β2 ≥ 0 is accepted at level α/2 against H1 − H0}.
The expressions for L,U are evaluated for all cases of x01, x02, see supplemental material for these expressions (details

in [17]). Although these expressions are long, nice symmetries appear in them. For example, when x01 > 0, x02 > 0,
it is found that the lower boundary of the confidence interval for E(Y ) is of the general form β̂0 + a1β̂1x01 + a2β̂2x02 −

g(Cα/2, Sx1 Sx2 , x01, x02, β̂1, β̂2), for some function g , if β̂1 ∈ S1 and β̂2 ∈ S2, where ai is either 0 or 1, i = 1, 2
and Sj ⊂ R2, j = 1, 2. Then for x01 < 0, x02 < 0, the upper boundary of the confidence interval for E(Y ) is
β̂0 + a1β̂1x01 + a2β̂2x02 + g(Cα/2, Sx1 Sx2 , x01, x02, β̂1, β̂2) if β̂1 ∈ S1 and β̂2 ∈ S2. Such symmetries are repeated for
all sign combinations of x01, x02.

6. σ2 unknown

6.1. When x01 > 0, x02 > 0

Considering the hypotheses (2.1), the LRT is 3 = (σ ∗2/σ̄ 2)n/2, where σ ∗2 and σ̄ 2 are the MLEs of σ 2 under G1 and G0,
respectively. The LRT rejects G0 for large values of, λ = 1−Λ2/n

= 1−
νS2+∥γ̂−γ∗

∥
2

νS2+∥γ̂−γ̄∥2
=

∥γ̄−γ∗
∥
2

νS2+∥γ̂−γ̄∥2
. Consider the test statistic

S01 =
ν3
1−3

=
∥γ̄−γ∗

∥
2

S2+∥γ̂−γ∗∥2/ν
, a strictly increasing function of 3. [16] has discussed that the distribution of S01 is very difficult

to determine (for least favorable or otherwise) in the one-predictor case. Following their suggestion, we propose the test:
reject G0 if T 2

1 ≡
∥γ̄−γ∗

∥
2

S2
is large, for our forgoing discussion. This test reduces to the χ̄2

01 test in (2.3) when σ 2 is known. It
may also be viewed as an approximation of the LRT for large ν.

As in σ known case, the least favorable distribution attains at γ = L. Using this value of γ , [(∥γ̂ −L∥2/σ 2)/3]/(S2/σ 2) ∼

F3,n−3, where Fk,m is an F random variable with k,m degrees of freedom. Using the same argument as in the σ known case
it follows that the least favorable null distribution of T 2

1 is

P(T 2
1 ≤ Cα|γ = L) = w0 +

3
i=1

wiP(Fi,n−3 ≤ Cα/i),

where wi’s are the weights in (2.10), and the critical value Cα solves

α = w1P(F1,n−3 > C2
α) + w2P(F2,n−3 > C2

α/2) + w3P(F3,n−3 > C2
α/3) (6.1)

for given α. Note that here Cα also depends on ν, that is, Cα = Cα(ω1, ω2, ν). Also note that Cα in the σ known case is
Cα(ω1, ω2, ∞), hence the use of the same notation. The solution Cα of (6.1), as a function of ω1, ω2 and ν, is tabulated in
Table S2 in supplement.

If the correct rejection region is given by {γ̂ : ∥γ̄ − γ∗
∥ > CαS}, then the acceptance region is convex as it was in the σ

known case and the boundary of the rejection region can be obtained from the σ known case replacing σ with S for each
case and using the Cα values from Table S2 according to the value of ν.

We now consider our second main hypothesis (3.1). The LRT rejects H0 for large values of the test statistic, S ′

01 =

∥γ̂−γ̄∥
2
−∥γ̂−γ∗

∥
2

S2+∥γ̂−γ∗∥2/ν
. Replacing σ with S, arguments similar to the σ known case show that when supγ∈H01

is attained, Dα = tν,α .
We propose the modification of the LRT as: to reject H0 at level α when (3.7) holds (replacing σ with S and Zα with tν,α).
When x01 < 0, x02 < 0, rejection regions of hypotheses (2.1), (3.1) are mirror images of those of (3.1), (2.1), respectively.
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6.2. When x01 > 0 and x02 < 0

Results in Section 4.1 hold except replace χ2
k by Fk,n−3. Further here note that Eα = Eα(θ1, ν) = Cα(θ1, π/2, ν) (i.e.,

Eα is a special case of Cα with ω1 = θ1 and ω2 = π/2). So values for Eα(θ1, ν) can also be obtained from Table S2. A
modified test is proposed in this case [17] similar to the σ known case with proper replacements. For hypotheses (4.8),
Kα = Kα(θ2, ν) = Cα(π/2, θ2, ν) (i.e. Kα is also a special case of Cα with ω1 = π/2 and ω2 = θ2). So values for Kα(θ2, ν) can
also be obtained from Table S2. A modified test is proposed in this case also as above [17].

7. Example

In Section 1.1, we introduced the SENIC data, which we analyze below. The variables of interest are the length of patient
stay in a hospital in days (Y) as a function of patient’s age in years (X ′

1) and infection risk (in percent) (X ′

2) given by [11]. Here
we suspect β1 is positive and β2 is negative. Our goal is to construct confidence interval for E(Y ) for given values of (x01, x02).

In this data with 113 observations, values of (X ′

1) range from 38.8 to 65.9, and, values of (X ′

2) range from 1.3 to 7.8.
We form the matrix X(113×3) with the ith row given by (1, X1, X2) where Xi,j+1 = X ′

i,j − X̄ ′

i,j = X ′

i,j − (53.23, 4.35) for
i = 1, . . . , 113, j = 1, 2, so that


Xi2 = 0,


Xi3 = 0, for i = 1, . . . , 113. Further, corr(X2, X3) = 0.0010, and

Xi2Xi3 = .73 which is close to 0, so that X2, X3 are almost orthogonal.
Ordinary least squares regression estimators for the regression model Y with X1 and X2 (second and third columns of

X(113×3), respectively) are β̂0 = 57.00, β̂1 = 0.28 and β̂2 = −5.16 and also S = 32.29, S2x1 = 2229.47 and S2x2 = 201.38.
To show the calculations for the x01 > 0, x02 < 0 case, let (x01, x01)⊤ = (2, 0.5) or (x′

01, x
′

02)
⊤

= (x01 + 53.2319, x02 +

4.3549)⊤ = (55.2319, 4.8549)⊤. Then c2 =
Sx2

x02
√
n = 2.6699, d2 =

Sx2 x01
x02Sx1

= 1.2022, θ1 = cos−1(
d2√

1+c2+d2
) = 1.1718,

θ2 = cos−1( 1√
1+c22+d22

) = 1.2417. Setting θk = ik π
12 , k = 1, 2 we find i1 = 4.4758 and i2 = 4.7429. Then we find

E0.025(4.48π/12, 111) = 2.1287 and K0.025(4.74π/12, 111) = 2.1074 from Table S2 (with i = 6) by linear interpolation.
Similar calculations for other sign choices of x01, x02 yield table below.

The following table gives the 95% confidence intervals for E(Y |x01, x02), for different choices of x01, x02.

(x01, x02) Two predictors First predictor Second predictor
Restricted

CI
Unrestricted

CI
Restricted

CI
Unrestricted

CI
Restricted

CI
Unrestricted

CI
(2, 0.5) (50.14,

62.39)
(47.99,
61.94)

(50.27,
64.27)

(50.82,
64.27)

(48.01,
61.24)

(48.02,
60.82)

(−2, −0.5) (51.61,
63.86)

(52.06,
66.01)

(49.73,
63.73)

(49.73,
63.18)

(52.76,
65.99)

(53.18,
65.99)

(1.5, −0.3) (52.16,
65.46)

(52.47,
65.46)

(50.56,
63.88)

(50.94,
63.88)

(52.15,
64.70)

(52.40,
64.70)

(−1.5, 0.3) (48.54,
61.84)

(48.54,
61.53)

(50.12,
63.59)

(50.12,
63.06)

(49.30,
61.85)

(49.30,
61.60)

We find that the lengths of these confidence intervals depend on the values of (x01, x02) chosen.

8. Discussion

Statistical inference for the mean of the regression function is considered when the coefficients are nonnegative (or
nonpositive) in the presence of two orthogonal predictors. The solutions are found using simple tools from calculus and
geometry. Although formulas derived are longer than the corresponding ones in the unrestricted (or restricted one predictor)
case, symmetry between different hypotheses regions helps substantially to deduce the formulas. Exact formulas of the
level probabilities under the least favorable distributions are found. Further research needs to be done regarding correlated
predictors, prediction intervals, lack-of-fit tests, and diagnostics for two predictor case. We hope our research will inspire
other work in these important areas of regression analysis under monotonicity of predictors.
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