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Due to absence of an universally acceptable magnitude of the
Type I error in various � elds, p values are used as a well-
recognized tool in decision making in all areas of statistical
practice. The distribution of p values under the null hypothe-
sis is uniform. However, under the alternative hypothesis the
distribution of the p values is skewed. The expected p value
(EPV) has been proposed by authors to be used as a measure of
the performance of the test. This article proposes the median of
the p values (MPV) which is more appropriate for this purpose.
We work out many examples to calculate the MPV’s directly
and also compare the MPV with the EPV. We consider testing
equality of distributionsagainst stochastic ordering in the multi-
nomial case and compare the EPV’s and MPV’s by simulation.
A second simulation study for general continuous data is also
considered for two samples with different test statistics for the
same hypotheses. In both cases MPV performs better than EPV.

KEY WORDS: Comparing test statistics; Expected p value;
Median p value; Power; Stochastic order.

1. INTRODUCTION

The theory of hypothesis testing depends heavily on the pre-
speci� ed value of the signi� cance level. To avoid the nonunique-
ness of the decision of testing the same hypotheses using the
same test statistic but different signi� cance levels, it is a pop-
ular choice to report the p value. The p value is the smallest
level of signi� cance at which an experimenter would reject the
null hypothesis on the basis of the observed outcome. The user
can compare his/her own signi� cance level with the p value and
make his/her own decision. The p values are particularly useful
in cases when the null hypothesis is well de� ned but the alterna-
tive is not (e.g., composite) so that Type II error considerations
are unclear. In this context to quote Fisher, “The actualvalueof p
obtainable from the table by interpolation indicates the strength
of evidence against the null hypothesis.”

We will consider tests of the form “Reject H0 when T ¶ c,”
where T is a real-valued test statistic computed from data when
testing the null hypothesis H0 against the alternative H1. The
value c is determined from the prespeci� ed size restrictions such
that PH0 (T ¶ c) = ¬ . Of course, when T is a discrete random
variable, one needs to adopt randomization so that all sizes are
possible. If t is the observed value of T and the distributionof T
underH0 is given by F0(¢), then the p value is given by 1 ¡ F0(t)
which is the probabilityof � nding the test statistic as extreme as,
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or more extreme than, the value actually observed. Thus, if the p
value is less than the preferred signi� cance level, thenone rejects
H0. Over the years several authors have attempted to properly
explain p values. Gibbons and Pratt (1975) provided interpre-
tation and methodology of the p values. Recently, Schervish
(1996) treated the p values as signi� cance probabilities.Discus-
sions on p values can be found in Blyth and Staudte (1997) and
in Dollinger, Kulinskaya, and Staudte (1996). However, these
articles do not treat the p values as random.

The p values are based on the test statistics used and hence
random. The stochastic nature of the p values was investigated
by Dempster and Schatzoff (1965) and Schatzoff (1966) who
introduced “expected signi� cance value.” Recently, Sackrowitz
and Samuel-Cahn (1999) investigated this concept further and
renamed it as the expected p value (EPV). Under the null hy-
pothesis, the p values have a uniform distribution over (0, 1) for
any sample size. Thus, under H0, EPV is 1/2 always, and there
is no way to distinguish p values derived from large studies and
those from small-scale studies. Also it would be impossible un-
der H0 to differentiate between studies well powered to detect
a posited alternative hypothesis and the underpowered to detect
the same posited alternative value.

In contrast, the distribution of the p values under the alter-
native hypothesis is a function of the sample size and the true
parameter value in the alternative hypothesis. As the p values
measure evidence against the null hypothesis, it is of interest to
investigate the behavior of the p values under the alternative at
various sample sizes. We reject H0 when p value is small which
is expected when H1 is true. As noted by Hung, O’Neill, Bauer,
and Kohne (1997), the distribution of the p values under the
alternative is highly skewed. The skewness increases with the
sample size and the true parameter value under the alternative
re� ecting the ability to detect the alternativeby increasingpower
under these situations. Hence it is more appropriate to consider
the median of the p value (MPV) instead of the EPV under the
alternative as a measure of the center of its distribution which is
the main focus of this article. Applicationsof the distributionof
the p values under the alternative in the area of meta-analysis of
several studies is considered by Hung et al. (1997). Studying the
p value under the alternative is also bene� cial over the power of
a test and is explained in the next paragraph.

When several test procedures are available for the same test-
ing situation one compares them by means of power. However,
power calculations depend on the chosen signi� cance levels,
and in discrete cases involves randomization. These steps can
be avoided by considering MPV’s. Also as the power functions
dependon the chosensigni� cance levels, it is dif� cult to compare
them when different power functions use different signi� cance
levels. On the other hand, MPV’s depend only on the alternative
and not on the signi� cance level. The smaller the value of MPV,
the stronger the test. The value of an MPV can tell us which
alternative an attained p value best represents for a given sam-
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ple size. Also, it helps to know the behavior of the MPV’s for
varying sample sizes.

In Section 2, we obtain a general expression for the MPV’s.
We also derive a computationally favorable form to be used
later in the article. In Section 3, we consider several examples to
compute the MPV’s directly. In Section 4, we perform a simu-
lation study to compute the MPV’s in the case of testing against
stochastic ordering for multinomial distributions. We also per-
form a second simulation study for general distributions when
testing the same hypotheses with two samples using three test
statisticsof t test, Mann–Whitney–Wilcoxon,and Kolmogorov–
Smirnov. In Section 5, we make concluding remarks.

2. p VALUE AS A RANDOM VARIABLE AND ITS
MEDIAN

For the test statistic T with distribution F0(¢) under H0, let
F ³ (¢) be its distributionunderH1. Also, let F ¡1

0 (¢) be the inverse
function of F0(¢), so that, F0(F ¡1

0 ( ® )) = ® , for any 0 < ® < 1.
Since the p value is the probabilityof observing a more extreme
value than the observed test statistic value, as a random variable
it can be expressed as

X = 1 ¡ F0(T ):

As F0(T ) ¹ U (0; 1) under H0, so is X . The power of the test
is related to the p value as

­ = P ³ (X µ ¬ )

= 1 ¡ F ³ (F ¡1
0 (1 ¡ ¬ )): (1)

Note the above is also the distribution function of the p value
under the alternative. As T is stochastically larger under the
alternative than under the null hypothesis, it follows that the p
value under the alternative is stochastically smaller than under
the null (Lehmann 1986). This explains why the distribution of
the p value is skewed to the right under the alternative. Hence to
estimate the center of the distribution of the p value, the median
is a better choice than the mean. The median is any value of
¬ = ¬ ¤ which satis� es

P ³ (X < ¬ ¤ ) µ :5 and P ³ (X > ¬ ¤ ) µ :5:

For continuous distributions, the median is the value of ¬ = ¬ ¤

which satis� es

P ³ (X µ ¬ ¤ ) = :5:

It follows from (1) by simple manipulations that

¬ ¤ = 1 ¡ F0(F ¡1
³ (:5)): (2)

Table 1. MPV’s in the Testing for the Normal Mean as a Func-
tion of the Signi�cance Level ¬ and Power ­

¬ =­ 0.40 0.50 0.60 0.70 0.80 0.90 0.95

0.01 0.0191 0.0100 0.0049 0.0022 0.0008 0.0002 0.0000
0.05 0.0820 0.0500 0.0288 0.0150 0.0065 0.0017 0.0005
0.10 0.1519 0.1000 0.0624 0.0355 0.0169 0.0052 0.0017
0.15 0.2168 0.1500 0.0986 0.0593 0.0302 0.0102 0.0036

Since F ³ (t) µ F0(t); 8t, it is seen thatF0(F ¡1
³ (:5)) ¶ :5 which

implies that ¬ ¤ µ :5 and equality holds when H0 is true. The
smaller the MPV the better it is to detect the alternative. Given
the stochastic nature of the p value under the alternative, it is
also true that the MPV is smaller than the EPV and hence clearly
preferable over the EPV. The MPV being smaller than the EPV
produces a smaller indifference region in the sense that higher
power is generated closer to the null hypothesis region using
MPV than with using EPV.

It is also possible to express the MPV in anotherway. Let T ¹
F ³ (¢) and, independently,T ¤ ¹ F0(¢). If the observed value of
T is t, then the p value is simply g(t) = P (T ¤ ¶ tjT = t). The
MPV is

med g(t) = MPV( ³ ) = P (T ¤ ¶ med T ): (3)

If H0 is true, then T and T ¤ are identicallydistributed,and hence
the above probability is .5 for any continuous distribution. For
discrete distributions, although the above expressions still hold,
MPV will be slightly higher as P (T ¤ = med T ) > 0. For an
UMP test, the MPV will be uniformly minimal for all ³ values
in the alternative as compared to the MPV’s of any other test of
the same H0 versus H1. For computational purposes the above
form of the MPV in (3) is very useful.

3. EXAMPLES

This section considers several examples to calculate the
MPV’s directly.

Example 1. Let X1; X2; : : : ; Xn be a random sample of size n
from a N ( · ; ¼ 2) distribution, and we like to test H0 : · µ · 0

versus H1 : · > · 0 where ¼ is known. Using the test statistic
T = X and a particular value · 1 in H1 it follows from (2) that

MPV = ©

µp
n( · 0 ¡ · 1)

¼

¶
; (4)

where © is the cdf of the standard normal distribution. It is well
known that for a size ¬ test to achieve power ­ at a speci� ed
alternative value · 1 the sample size n satis� es

n =
(z1¡ ¬ + z­ )2 ¼ 2

( · 0 ¡ · 1)2
; (5)

where z ® is the ® th quantile of the standard normal distribution.
Using (4) and (5), it follows that

MPV = ©( ¡ z1¡ ¬ ¡ z­ ): (6)

In Table 1, we have provided values of the MPV’s in (6) using
some commonly used values of ¬ and ­ . Each MPV value is
smaller than the corresponding EPV value of Table 1 of Sack-
rowitz and Samuel-Cahn (1999). We have also graphed the EPV
and the MPV in Figure 1 for various values of · 1 > 0 when
· 0 = 0 at sample sizes 10 and 50. The MPV’s decrease from
the .5 value at much faster rate than the EPV’s although for
both the rate increases with the sample size. In Figure 2, we
have graphed the EPV and the MPV for various sample sizes at
· 1 = :3 and at · 1 = :5. It is observed that the MPV’s decrease
at a faster rate than the EPV’s at smaller sample sizes and when
closer to the null hypothesis.
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Figure 1. EPV’s and MPV’s at various · 1 > 0 when testing for the
normal mean with · 0 = 0 for sample sizes n = 10 and n = 50.

If the value of ¼ is unknown, the sample standard deviationS

(or any other consistent estimator of ¼ ) may be used to replace
it for moderately large n. The formula in (4) is approximately
correct in this case, consequently,Table 1 is approximately cor-
rect for the one-sample t test situation.After observing an actual
p value for an approximately normally distributed statistic, the
expression in (4) can be used to determine the · 1 for which the
given value would be an MPV.

Example 2. Let X1; X2; : : : ; Xn be a random sample of size
n from N( · 1; ¼ 2), and independently, let Y1; Y2; : : : ; Ym be
another random sample of size m from N ( · 2; ¼ 2), and we like

Figure 2. EPV’s and MPV’s at various sample sizes when testing for
the normal mean with · 0 = 0 and · 1 =.3 and · 1 = .5.

to test H0 : · 1 = · 2 versus H1 : · 1 > · 2 where ¼ is known.
Using the test statisticT = X ¡ Y and a particularvalue · 1 ¡ · 2

in H1 it follows that

MPV = ©

µr
mn

m + n

· 2 ¡ · 1

¼

¶
: (7)

When m = n, formula (6) is still valid and hence Table 1 is also
correct in this case. For unknown ¼ , a consistent estimator of ¼
may be used in (7) for moderately large m; n, and the formula
in (7) becomes approximately correct in this case.

Example 3. Suppose X1; X2; : : : ; Xn is a random sample of
size n from a N ( · ; ¼ 2) distribution, and we like to test H0 :
¼ µ ¼ 0 versus H1 : ¼ > ¼ 0 when · is unknown. Using the
test statistic (n ¡ 1)S2=¼ 2 where S2 is the sample variance, it
follows from (4) that at the alternative point ¼ 1,

MPV = 1 ¡ G

µ
¼ 2

1

¼ 2
0

G¡1(:5)

¶
; (8)

where G is the cdf of a chi-square distributionwith n ¡ 1 degrees
of freedom. Note we need not use the F -distribution as needed
for the computationof the EPV in this problem (Sackrowitz and
Samuel-Cahn 1999).

The following two examples are concerned with testing the
scale and location parameters of the exponential distribution.

Example 4. Suppose T is exponentially distributed with pa-
rameter ³ (from pdf f (t) = ³ e¡t³ for t > 0) denoted by exp( ³ )
and we like to test H0 : ³ ¶ ³ 0 versus H1 : ³ < ³ 0. It is seen
that med T = (1=³ )ln 2. For a particular value of ³ 1 < ³ 0, if
T ¤ ¹ exp( ³ 0) and T ¹ exp( ³ 1), the MPV is given by

P (T ¤ ¶ med T ) = 2¡ ³ 0=³ 1 :

For a size ¬ test with power ­ , since ln ¬ = ln ­ = ³ 0=³ 1, it fol-
lows that for ¬ = :1 and ­ = :9, the MPV is 2:645£ 10¡7. The
EPV is .0438 in this case (Sackrowitz and Samuel-Cahn 1999).
If a random sample X1; X2; : : : ; Xn is available, the test may
be based on T =

Pn
i = 1 Xi. Here T has a gamma distribution

with shape parameter n and scale parameter ³ , we will denote
its cdf by Gn;³ (¢). Then it follows that the MPV at alternative
point ³ 1 is given by

P (T ¤ ¶ G¡1
n;³ 1

(:5)) = 1 ¡ Gn;³ 0 (G¡1
n;³ 1

(:5)):

Example 5. Suppose X1; X2; : : : ; Xn is a random sample
of size n from an exponential distribution with parameters
· ; ³ (with pdf f (x) = (1=³ )e¡(x¡ · )=³ for x ¶ · ) de-
noted by exp( · ; ³ ) and we like to test H0 : · µ · 0 ver-
sus H1 : · > · 0 where ³ is known. The test statistic is
T = min(X1; X2; : : : ; Xn) whose distribution is exp( · ; ³ =n).
It is seen that med T = · +( ³ =n)ln 2. For a particularalternative
· 1 > · 0, the MPV is given by :5e¡n( · 1¡ · 0)=³ .

4. SIMULATION STUDIES

We perform two simulation studies to calculate and compare
the EPV’s and MPV’s. For the discrete case we consider the
binomial distribution, with m trials and probability of success
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Table 2. EPV’s and MPV’s for Testing H0 : p = q Against H1: p is Stochastically Larger than q for Different Combinations of m; n; p

m = 3 m = 6

EPV MPV EPV MPV

p n = 50 n = 100 n = 50 n = 100 n = 50 n = 100 n = 50 n = 100

0.50 0.509 0.508 0.510 0.506 0.509 0.511 0.505 0.510
0.51 0.454 0.432 0.439 0.407 0.445 0.421 0.421 0.401
0.52 0.404 0.364 0.363 0.309 0.380 0.335 0.332 0.279
0.53 0.350 0.291 0.292 0.222 0.319 0.250 0.248 0.164
0.54 0.300 0.235 0.230 0.143 0.258 0.170 0.168 0.079
0.55 0.252 0.174 0.165 0.081 0.202 0.110 0.103 0.033
0.56 0.208 0.129 0.117 0.045 0.149 0.065 0.055 0.011
0.57 0.169 0.087 0.078 0.020 0.102 0.037 0.027 0.003
0.58 0.135 0.054 0.050 0.007 0.069 0.019 0.012 0.001
0.59 0.102 0.036 0.031 0.003 0.044 0.008 0.006 0.000
0.60 0.075 0.021 0.017 0.001 0.026 0.002 0.002 0.000
0.61 0.054 0.011 0.008 0.000 0.013 0.001 0.001 0.000
0.62 0.037 0.006 0.003 0.000 0.007 0.000 0.000 0.000
0.63 0.026 0.003 0.002 0.000 0.003 0.000 0.000 0.000
0.64 0.017 0.001 0.001 0.000 0.001 0.000 0.000 0.000

p, given by

pj =

µ
m
j

¶
pj(1 ¡ p)m¡j; j = 0; : : : ; m (9)

which is symmetric when p = :5. When p > :5, the binomial
distribution is skewed to the left, that is, it becomes stochas-
tically larger than the p = :5 case. Let q = (q0; : : : ; qm)
and p = (p0; : : : ; pm) be the vectors of binomial probabil-
ities obtained from (9) with p = :5 and p > :5, respec-
tively. We consider testing H0 : p = q (i.e., pi = qi; 8i)
against H1 : p is stochastically larger than q (i.e.,

Pm
i = j pi ¶Pm

i = j qi; 8j = 1; : : : ; m; and
Pm

i= 0 pi =
Pm

i= 0 qi = 1). The

likelihood ratio test statistic is given by

T = 2n

mX

i= 0

p̂i ln (pi=qi)

where pi is the ith coordinateof p = p̂Ep̂(q=p̂jA); Ep̂(q=p̂jA)
is the isotonic regression of q=p̂ (all multiplications and divi-
sions of vectors are donecoordinatewise)onto the nonincreasing
cone A = fx = (x0; x1; : : : ; xm) : x0 ¶ x1 ¶ ¢ ¢ ¢ ¶ xmg
with weights p̂. It is well established (Robertson, Wright, and
Dykstra 1988) that under H0, asymptotically, the statistic T has
a chi-bar squared distribution.

Table 3. MPV’s for the One-Sided, Two-Sample t , Mann–Whitney–Wilcoxon (MWW), and Kolmogorov–Smirnov (KS) Tests
for Various Sample Sizes, Shift Parameters and Underlying Distributions

n = 10 n = 20 n = 50

t MWW KS t MWW KS t MWW KS

Normal(0,1)

¢ 0 =0.0000 0.4943 0.5196 0.6745 0.4964 0.5032 0.6485 0.5066 0.4927 0.6181
¢ 1 =0.3600 0.2115 0.2497 0.4072 0.1275 0.1368 0.1662 0.0389 0.0413 0.0888
¢ 2 =0.5692 0.1084 0.1271 0.2039 0.0399 0.0458 0.0886 0.0027 0.0024 0.0100
¢ 3 =0.8050 0.0446 0.0567 0.0843 0.0085 0.0086 0.0189 0.0001 0.0000 0.0007

Exponential

¢ 0 =0.0000 0.5022 .5125 0.6858 0.4924 0.5078 0.6397 0.4864 0.5094 0.6031
¢ 1 =0.3600 0.2030 0.1235 0.2157 0.1221 0.0505 0.0913 0.0309 0.0041 0.0017
¢ 2 =0.5692 0.0905 0.0544 0.0851 0.0336 0.0104 0.0060 0.0013 0.0000 0.0000
¢ 3 =0.8050 0.0312 0.0168 0.0281 0.0038 0.0012 0.0004 0.0000 0.0000 0.0000

Chi-square(10)

¢ 0 =0.0000 0.4863 0.5202 0.6815 0.5151 0.4878 0.6491 0.4891 0.5050 0.5990
¢ 1 =1.6100 0.1955 0.2234 0.4172 0.1300 0.1129 0.1682 0.0349 0.0318 0.0533
¢ 2 =2.5456 0.0947 0.1129 0.2001 0.0376 0.0299 0.0844 0.0023 0.0017 0.0054
¢ 3 =3.6000 0.0341 0.0376 0.0764 0.0063 0.0049 0.0153 0.0000 0.0000 0.0010

Uniform(0,1)

¢ 0 =0.0000 0.4959 0.5196 0.6745 0.5013 0.5032 0.6485 0.5086 0.4927 0.6181
¢ 1 =0.1039 0.2154 0.2497 0.4072 0.1305 0.1426 0.2897 0.0365 0.0442 0.0888
¢ 2 =0.1643 0.1125 0.1271 0.2039 0.0431 0.0506 0.0886 0.0026 0.0036 0.0187
¢ 3 =0.2324 0.0477 0.0647 0.2039 0.0104 0.0122 0.0416 0.0000 0.0001 0.0022

Double exponential

¢ 0 =0.0000 0.5016 0.5119 0.6830 0.5008 0.5122 0.6507 0.4947 0.5013 0.6074
¢ 1 =0.5091 0.2119 0.1793 0.2138 0.1260 0.0928 0.1688 0.0329 0.0156 0.0183
¢ 2 =0.8050 0.0984 0.0841 0.0842 0.0357 0.0197 0.0426 0.0019 0.0003 0.0004
¢ 3 =1.1384 0.0370 0.0327 0.0286 0.0054 0.0033 0.0068 0.0000 0.0000 0.0000
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We create a random sample T1; : : : ; Tn distributed like T , and
independently, another random sample T ¤

1 ; : : : ; T ¤
n distributed

like T ¤ . An unbiased estimator of EPV is given by

AE =
1

n

nX

i = 1

I(T ¤
i ¶ Ti);

and an unbiased estimator of MPV is given by

AM =
1

n

nX

i = 1

I(T ¤
i ¶ med Ti):

The variance of AE is EPV(1 ¡ EPV)=n and that of AM is
MPV(1 ¡ MPV)=n

We consider m = 3; 6 with sample sizes n = 50, 100 and
replications 10,000. The results are given in Table 2. When p =
:5, both of the EPV and MPV start slightly higher than .5 as
expected for discrete distributions. For p > :5, the MPV’s are
consistently smaller than the EPV’s, both being very close to
zero when p > :65. The effects are more pronounced for larger
n. Note the exact value of the EPV or the MPV is dif� cult to
calculate in this case.

We consider a second simulation study to compare the per-
formance of several tests using the MPV’s for a general contin-
uous case. We use the same set up as Sackrowitz and Samuel-
Cahn (1999) but calculate the MPV’s instead. Thus we consider
the two-sample problem of testing H0 : F = G versus H1 :
F is stochastically larger than G using two independentrandom
samples from F and G respectively. The test statistics consid-
ered are the two-sample t test, the Mann–Whitney–Wilcoxon
(MWW) test and the Kolmogorov–Smirnov (KS) test. The com-
parison is made for shift alternatives so that G(x) = F (x + ¢),
where F is chosen as various distributions. We consider F as
normal (0,1), exponential, chi-square with degrees of freedom
10, uniform (0,1) and double exponential. We chose sample
sizes 10, 20, 50 and ¢0 = 0; ¢1 = 2:546¼ =

p
50; ¢2 =

2:546¼ =
p

20; ¢3 = 2:546¼ =
p

10, where ¼ is the actual stan-
dard deviation of the underlying distribution F . This choice
is made so that when the underlying distribution is normal, a
test based on the normal two-sample statistic and n observa-
tions would have size ¬ = :10 and power ­ = :7 (as opposed
to ­ = :9 of Sackrowitz and Samuel-Cahn 1999, table 4) for
¢ = (2:546¼ =

p
n) and thus from Table 1 we have MPV =

.0355. Note that we have used the same ¢i values for all n. We
consider 10,000 replications.

TheMPV valuesin Table 3 havesimilarmagnitudeas the EPV
values of Sackrowitz and Samuel-Cahn (1999, table 4) even at

­ = :7. They also have similar pattern as the correspondingEPV
values. So their conclusions are also valid in our case. However,
our KS values of MPV perform worse than the corresponding
EPV values of Sackrowitz and Samuel-Cahn (1999) in all cases
considered.

5. CONCLUSION

The distribution of the p values under the alternative is a
skewed distributionto the right, and hence the median of this dis-
tribution is advocated as a more appropriate tool than its mean
for determination of the strength of a test for a particular al-
ternative. The alternatives closer to H0 are detected easily with
MPV than with EPV. The MPV is easily computed in most cases
and does not depend on the speci� ed signi� cance level of a test.
Thus, it may be used as a singlenumberwhich can help to choose
among different test statistics when testing the same hypotheses.
For approximatelynormally distributed statistics,Table 1 can be
consulted to relate the MPV value to the usual signi� cance level
and power combinations.

[Received January 2001. Revised August 2001.]
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