Qualifying Exam in Geometry and Topology Spring 2011

1. Calculations

A. Let the following geometric objects be given in some neighborhood of a manifold M with coordinates $\{x,y,z\}$

$$f \in FM$$
, $\alpha \in \Lambda^1 M$, $\omega \in \Lambda^2 M$, $X, Y \in XM$

$$f = x^{2} + yzt$$

$$\alpha = dx + x dy + z dz + dt$$

$$X = x \partial_{x}$$

$$Y = x^{2} \partial_{y} + \partial_{x}$$

$$\omega = (x^{2} + y^{2}) dx \wedge dy + y dz \wedge dt$$

Calculate the following

rank of
$$\alpha$$
, $\alpha \wedge \omega$, $L_X f$, $L_X Y$, $X_{\perp} \omega$, $L_X \omega$

B. On a manifold $M = \mathbb{R}^3$ with coordinates $\{x,y,z\}$ the standard inner product is given and a volume form is $\eta = (1+x^2) dx \wedge dy \wedge dz$. Let also a "constant" vector field $X = \partial_x$ be given and a biform $\omega = dx \wedge dy$, Calculate the following:

$$\operatorname{div} X$$
, $\operatorname{curl} X$, * ω (the last is the Hodge star)

2. Definitions. Define (a) exterior derivative, (b) tangent vector, (c) Lie derivative of an exterior form.

3. Proofs (do 3)

- a) State and prove Poincaré Lemma
- (b) State and prove Stokes Theorem
- (c) Show that the dual space of a finite-dimensional real linear space L has the same dimension as the space: dim $L = \text{dm } L^*$.
- (d) Show that the two-dimensional sphere S² is a differentiable manifold
- **4. Simple questions.** Explain what in mathematical folklore the following expressions mean:
 - a) sphere cannot be combed
 - b) exterior derivative d is a natural operation on a manifold

Give quick argument (one-line proof)

- c) if each of the vector fields *X* and *Y* are symmetries of a dynamical system given by vector field *Z*, then the commutator [X,Y] is also its symmetry.
- d) An integral of any exact bi-form on a two-dimensional torus is zero.
- **5. Derive** the relation between Lie bracket of vector fields and exterior derivative of one-forms that starts

$$d\alpha(X,Y) = -\alpha([X,Y]) + \dots$$