Directions. Answer 8 of the following 10 questions. Begin each question on a fresh sheet of paper. Hand in only the 8 questions you wish to have graded.

1. Let G be a group with cyclic automorphism group $Aut(G)$. Prove that G is abelian.

2. Prove that every group of order 35 is cyclic.

3. Show that if the center of a group G is of index n in G, then every conjugacy class of G has at most n elements.

4. Classify all abelian groups of order 120 and list at least 3 non-abelian groups of order 120. Prove that the non-abelian groups you listed are nonisomorphic.

5. Let H be a proper subgroup of a finite group G. Prove that the union of the conjugates of H is not the whole group G.

6. Let N be a normal subgroup of the finite group G. A subgroup H is said to be a complement for N in G if $NH = G$ and $N \cap H = 1$.
 (a) Show that all complements for N in G are isomorphic.
 (b) If H is a complement for N in G, show that any conjugate of H is also a complement for N in G.
 (c) If N has a complement in G that is a p-group for some prime p, prove that every Sylow p-subgroup of G contains a complement for N.
7. Let
\[S = \{ \begin{pmatrix} a & b \\ 2b & a \end{pmatrix} \mid a, b \in \mathbb{Z} \}. \]

(a) Prove that \(S \) is a subring of the ring \(M_2(\mathbb{Z}) \) of \(2 \times 2 \)-matrices with coefficients in \(\mathbb{Z} \).

(b) Prove that the map \(\varphi : \mathbb{Z}[\sqrt{2}] \to S \) defined by
\[\varphi(a + b\sqrt{2}) = \begin{pmatrix} a & b \\ 2b & a \end{pmatrix} \]
is a ring homomorphism.

8. An element \(e \) of a ring \(S \) is called idempotent if \(e^2 = e \). Note that in a product \(R \times R' \) of rings with unity, the element \(e = (1, 0) \) is idempotent. The object of this problem is to prove a converse for commutative rings.

(a) Prove that if \(e \) is an idempotent element of a ring with unity, then \(e' = 1 - e \) is also idempotent.

(b) Let \(e \) be an idempotent element of a commutative ring with unity, \(S \), and let \(e' = 1 - e \). Prove that \(S \) is isomorphic to the product \((eS) \times (e'S) \).

9. Let \(R \) be a commutative ring, and let \(I \) be an ideal of the polynomial ring \(R[x] \). Suppose that the lowest degree of a nonzero element of \(I \) is \(n \) and that \(I \) contains a monic polynomial of degree \(n \). Prove that \(I \) is a principal ideal.

10. Let \(R \) be a commutative ring with 1 and \(M \) a maximal ideal of \(R \). Suppose \(I, J \) are ideals of \(R \) such that \(IJ \subseteq M \). Show that \(I \subseteq M \) or \(J \subseteq M \).