1. Suppose that X has probability density function

$$f_X(x) = \frac{\theta}{x^{1+\theta}}, \quad x \ge 1.$$

- a) If $U = X^2$, derive the probability density function $f_U(u)$ of U.
- b) Find the method of moments estimator of θ .
- c) Find the method of moments estimator of θ^2 .
- 2. X_1, X_2, \ldots, X_n is a random sample from a normal distribution with mean 5 and unknown variance σ^2 .

a) Find the UMVUE of σ^2 (justify your answer using the Rao-Blackwell Theorem and related results).

- b) If n = 1, find the minimal sufficient statistics (justify).
- 3. In problem (2) (general n), find the Cramer-Rao lower bound for an unbiased estimator of
 - a) σ^2 ,
 - b) *σ*.
 - c) Find an efficient estimator of σ^2 .
- 4. Suppose that $Y_1, ..., Y_n$ are independent $binomial(m_i, \rho)$ where the $m_i \ge 1$ are known constants. Let

$$T_1 = \frac{\sum_{i=1}^n Y_i}{\sum_{i=1}^n m_i}$$
 and $T_2 = \frac{1}{n} \sum_{i=1}^n \frac{Y_i}{m_i}$

be estimators of ρ .

- a) Find $MSE(T_1)$.
- b) Find $MSE(T_2)$.
- c) Which estimator is better?

Hint: by the arithmetic-geometric-harmonic mean inequality,

$$\frac{1}{n}\sum_{i=1}^{n}m_{i} \ge \frac{1}{n}\sum_{i=1}^{n}\frac{1}{m_{i}}.$$

5. Suppose that the joint probability distribution function of $X_1, ..., X_k$ is

$$f(x_1, x_2, ..., x_k | \theta) = \frac{n!}{(n-k)!\theta^k} \exp\left(\frac{-[(\sum_{i=1}^k x_i) + (n-k)x_k]}{\theta}\right)$$

where $0 \le x_1 \le x_2 \le \cdots \le x_k$ and $\theta > 0$.

- a) Find the maximum likelihood estimator (MLE) for θ .
- b) What is the MLE for θ^2 ? Explain briefly.
- 6. Let $X_1, ..., X_n$ be independent identically distributed random variables from a half normal $\text{HN}(\mu, \sigma^2)$ distribution with pdf

$$f(x) = \frac{2}{\sigma \sqrt{2\pi}} \exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right)$$

where $\sigma > 0$ and $x > \mu$ and μ is real. Assume that μ is known.

- a) What is the UMP (uniformly most powerful) level α test for $H_0: \sigma^2 = 1$ vs. $H_1: \sigma^2 = 4$?
- b) If possible, find the UMP level α test for $H_0: \sigma^2 = 1$ vs. $H_1: \sigma^2 > 1$.