Ph.D. Qualifying Examination in Statistics 4:30–8:30 Thursday, January 28, 2010

1. Let $Y_1, ..., Y_n$ be independent and identically distributed (iid) from a distribution with probability mass function $f(y) = \rho(1-\rho)^y$ for y = 0, 1, 2, ... and $0 < \rho < 1$. Then $E(Y) = (1-\rho)/\rho$ and $VAR(Y) = (1-\rho)/\rho^2$.

a) Find the limiting distribution of $\sqrt{n} \left(\overline{Y} - \frac{1-\rho}{\rho} \right)$.

- b) Show how to find the limiting distribution of $g(\overline{Y}) = \frac{1}{1+\overline{Y}}$. Deduce it completely.
- c) Find the method of moments estimator of ρ .
- 2. Let X_1, \ldots, X_n be iid with pdf

$$f(x) = \frac{\cos(\theta)}{2\cosh(\pi x/2)}\exp(\theta x)$$

where x is real and $|\theta| < \pi/2$.

- a) Find the maximum likelihood estimator (MLE) for θ .
- b) What is the MLE for $tan(\theta)$? Explain briefly.
- 3. Let $X_1, ..., X_n$ be iid from a Poisson (θ) distribution. Find the uniformly minimum variance unbiased estimator of $g(\theta) = P_{\theta}(X = 1) = \theta e^{-\theta}$.
- 4. Let $X_1, ..., X_n$ be independent identically distributed random variables from an inverse exponential distribution with pdf

$$f(x) = \frac{\theta}{x^2} \exp\left(\frac{-\theta}{x}\right)$$

where $\theta > 0$ and x > 0.

- a) What is the UMP (uniformly most powerful) level α test for $H_0: \theta = 1$ versus $H_1: \theta = 2$?
- b) If possible, find the UMP level α test for $H_0: \theta = 1$ versus $H_1: \theta > 1$.

5. Let $\theta = (p_1, p_2, \dots, p_5), p_i \ge 0, \sum_{i=1}^5 p_i = 1$. Suppose X_1, \dots, X_n are discrete random variables with $P_{\theta}(X_i = j) = p_j, 1 \le j \le 5$.

Consider testing

 $H_0: p_1 = p_2 = p_3$ versus $H_1: H_0$ is not true.

Let y_j = number of $x_1, ..., x_n$ equal to $j, 1 \le j \le 5$.

a) Show that the likelihood ratio test statistic can be expressed as

$$-2\log\lambda(x) = 2\sum_{i=1}^{5} y_i \log\left(\frac{y_i}{m_i}\right),\,$$

where m_i are the expected frequencies. Find expressions for m_i , $1 \le i \le 5$.

- b) Find the large sample distribution of the likelihood ratio test statistic.
- 6. Let $X_1, ..., X_n$ be a random sample from a gamma $(\alpha = 5, \beta)$ population. Consider testing $H_0: \beta = 7$ versus $H_1: \beta \neq 7$.
 - a) What is the MLE of β ?

b) Derive a Wald statistic for testing H_0 , using the MLE in both the numerator and denominator of the statistic.

c) What is the large sample distribution of the Wald statistic in (b)?