Ph.D. Qualifying Examination in Statistics January 25, 2011

1. Let $Y_1, ..., Y_n$ be independent and identically distributed (iid) from a distribution with probability density function

$$f(y) = \frac{2y}{\theta^2}$$

for $0 < y \le \theta$ and f(y) = 0, otherwise.

a) Find the limiting distribution of \sqrt{n} ($\overline{Y} - c$) for appropriate constant c.

b) Find the limiting distribution of $\sqrt{n} \left(\log(\overline{Y}) - d \right)$ for appropriate constant d.

- c) Find the method of moments estimator of θ^k .
- 2. Let $(X_1, X_2, ..., X_n)$ be a random sample from a population with pdf

$$f(x|\theta) = e^{-(x-\theta)}, \quad x \ge \theta$$

and $f(x|\theta) = 0$ for $x < \theta$. For this distribution, the minimal sufficient statistic is complete. Find the uniformly minimum variance unbiased estimator of θ .

3. Let $Y_1, ..., Y_n$ be independent identically distributed random variables with pdf (probability density function)

$$f(y) = (2 - 2y)I_{(0,1)}(y) \ \nu \ \exp[(1 - \nu)(-\log(2y - y^2))]$$

where $\nu > 0$ and n > 1. The indicator $I_{(0,1)}(y) = 1$ if 0 < y < 1 and $I_{(0,1)}(y) = 0$, otherwise.

- a) Find a complete sufficient statistic.
- b) Find the (Fisher) information number $I_1(\nu)$.
- c) Find the Cramer Rao lower bound (CRLB) for estimating $g(\nu) = \frac{1}{\nu}$.

4. Let $X_1, ..., X_n$ be independent and identically distributed (iid) from a distribution with probability density function

$$f(x) = \frac{2x}{\theta^2}$$

for $0 < x \leq \theta$ and f(x) = 0, otherwise. Let $T = c \max(X_1, ..., X_n) = cX_{(n)}$ be an estimator of θ where c is a constant.

a) Find the mean square error (MSE) of T as a function of c (and θ and n).

b) Find the value of c that minimizes the MSE. Prove that your value is the minimizer.

5. Two independent and identically distributed measurements X_1, X_2 are made from a pdf $f(x|\theta)$ with $\theta > 0$, where

$$f(x|\theta) = \begin{cases} \frac{1}{2} \ \theta \ e^{-\theta x}, & \text{if } x \ge 0, \\ \\ \frac{1}{2} \ \theta^{-1} \ e^{x/\theta}, & \text{if } x < 0. \end{cases}$$

a) Find the maximum likelihood estimator of θ in terms of X_1, X_2 .

b) Find the most powerful hypothesis test of H_0 : $\theta = 1$ versus the alternative $H_1: \theta = 2$ of size 0.10, giving an equation to determine the rejection cutoff but not solving it explicitly.

- c) Suppose the observed values satisfy $x_1 > 0$ and $x_2 > 0$. Justify that your test is or is not UMP versus $H_1: \theta > 1$.
- 6. Let $(X_1, X_2, ..., X_n)$ and $(Y_1, Y_2, ..., Y_m)$ be two independent random samples from normal populations with parameters (μ_1, σ_1^2) and (μ_2, σ_2^2) , respectively. Assuming $\sigma_1^2 = 4\sigma^2, \sigma_2^2 = \sigma^2, \sigma^2$ unknown, develop a test of level α for all $\sigma^2 > 0$ when testing $H_0: \mu_1 = \mu_2$ versus $H_1: \mu_1 \neq \mu_2$.