Ph.D. Qualifying Exam in Topology January 2008

Instructions: Do as many of the ten problems below as you can. Please use a separate sheet of paper for each problem. If a problem takes more than one page, number the pages. Do not use the back of a page. Good luck!

- 1. (0-10 points; two points off for each wrong answer.)
 - a) What is a Lindelöff space?
 - b) Define local compactness.
 - c) Define the compactification of a space.
 - d) State the Lebesgue Number Lemma.
 - e) State Tychonoff's Theorem.
 - f) State the Tietze Extension Theorem.

g) Let $f: X \to Y$ and $g: X \to Y$ be continuous maps between topological spaces. Define what it means for f to be homotopic to g.

- 2. (10 points) Construct an example showing that a quotient space of a Hausdorff space need not be Hausdorff.
- 3. (10 points) Let I = [0, 1]. Let \mathcal{T}_p be the product topology for $I \times I$ and let \mathcal{T}_d be the dictionary order topology on $I \times I$. Compare them.
- 4. (10 points) Let $X \subset Y \subset Z$, where Z is a topological space and Y has the subspace topology. Prove that the closure of X with respect to Y is the same as the closure of X with respect to Z.
- 5. (10 points) Let \mathbb{R}_f be the real numbers with the finite complement topology. Consider the product and box topologies on $(\mathbb{R}_f)^{\omega}$.

Let $g(t) = (\sin t, \sin t, \sin t, \dots)$ be a function from \mathbb{R}_f to $(\mathbb{R}_f)^{\omega}$. For which topologies is g continuous? Let $h(t) = (t, t, t, \dots)$ be a function from \mathbb{R}_f to $(\mathbb{R}_f)^{\omega}$. For which topologies is h continuous?

- 6. (15 points) Let X be a compact Hausdorff space. Prove that if X has no isolated points, then X is uncountable.
- 7. (10 points) Prove that the space \mathbb{R}_l is normal.
- 8. (15 points) Let X be a path connected space. Let a and b be points in X. Prove that $\pi_1(X, a)$ is isomorphic to $\pi_1(X, b)$.
- 9. (10 points) Prove that \mathbb{R}^2 is not homeomorphic to \mathbb{R}^3 .