Part I. Show all work for possible partial credit. 5 points each.

1. Solve the equation for x. \(3x - 2(1 - x) = -8\)

2. Solve the inequality.

\[-2x - 5 \leq 7\]

Graph solution:

3. Graph the given line. Label all intercepts.

\[
\frac{1}{3}x - 2y = -4
\]
4. Given the graph of the line
 a) find the slope of the line.

 b) write the equation of the line.

5. Find the product: \((2x^2 - 5)^2\)

6. Simplify using only positive exponents. Assume all variables represent positive real numbers.
 \[3x^{-4}(5x^3)^2\]

7. Simplify the expression:
 \[3 - \frac{2}{5} \left(-\frac{3}{4} \right)\]

8. Find the quotient and remainder.
 \[x + 2 \div x^3 - 2x^2 + 5x - 4\]
For problems 9-12, factor completely:

9. \(4x^2 - 25 \)
10. \(x^2 - 7x + 10 \)

11. \(2x^2 + 19x - 10 \)
12. \(2x^2 - 6x - 20 \)

13. Given \(f(x) = 3x - x^2 \), evaluate

 a) \(f\left(\frac{1}{3}\right) \)
 b) \(f(-2) \)

14. Solve for \(x \): \(\sqrt{7x - 24} = 2\sqrt{x} \)

15. Given \(C = \frac{5}{9}(F - 32) \), solve for \(F \)
16. Carry out the indicated operation and express in simplest form. Assume that all variables represent positive real numbers.

a) $\sqrt{50a^4b^6}$

b) $2\sqrt{20} + \sqrt{45}$

Part II. Show all work for possible partial credit. 8 points each

17. Solve for x.
\[
\frac{2x + 5}{3} - \frac{x - 2}{4} = 2
\]

18. Indicate with a \checkmark whether 3 is in the domain of each function.

<table>
<thead>
<tr>
<th>Function</th>
<th>3 is in domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x) = (x - 3)(x + 2)$</td>
<td>□</td>
</tr>
<tr>
<td>$g(x) = \sqrt{x + 2}$</td>
<td>□</td>
</tr>
<tr>
<td>$h(x) = \sqrt{x - 4}$</td>
<td>□</td>
</tr>
<tr>
<td>$m(x) = \frac{2}{x - 3}$</td>
<td>□</td>
</tr>
</tbody>
</table>
19. Find the equation of the line passing through \((-2, 4)\) with slope 5.

The standard form of the equation is \(\Rightarrow \quad \underline{x} + \underline{y} = \underline{5} \).

The slope intercept form is \(\Rightarrow y = \underline{1} \underline{x} + \underline{5} \).

20. For the following pair of functions, find the following. Be sure to express in simplest form.
\[f(x) = 4x^2 - 5 \quad \text{and} \quad g(x) = -2x^2 + x + 7 \]

a) \((f + g)(3) = \)

b) \((f - g)(x) = \)

21. Graph the function by creating a table of ordered pairs. Label all intercepts.
\[f(x) = 4 - x^2 \]
22. Complete the following table.

<table>
<thead>
<tr>
<th>Inequality</th>
<th>Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) $x \leq -2$</td>
<td></td>
</tr>
<tr>
<td>b) $(-\infty,0)$</td>
<td></td>
</tr>
<tr>
<td>c) $1 < x \leq 5$</td>
<td></td>
</tr>
<tr>
<td>d) $x \neq 4$</td>
<td></td>
</tr>
</tbody>
</table>

23. Express in simplest form: \[\frac{x^2 - 4x}{x^2 - 5x + 4} \]

24. For problems 24 and 25, perform indicated operation. Simplify.

24. $\frac{2x - 6}{4x^2} \div (x - 3)$

25. $\frac{3}{x - 2} + \frac{5}{x - 2} - \frac{x}{x^2 - 4}$
26. Solve for x.

 a) $3x^2 - 30 = 0$

 b) $-(2x - 5)(x + 3) = 0$

27. Solve for x. $(x - 2)(x + 1) = 10$

28. Solve for x. $x^2 + 4x - 2 = 0$
Part II. Choose 3 of the following 5 problems. You must indicate the 3 problems to be graded. If not, we will grade the first three. Show all work for possible partial credit. 8 points each.

☐ 29. Solve for x. \[\frac{2}{x} - \frac{35}{x^2} = 0 \]
Grade

☐ 30. Solve for x. \[x^4 - 14x^2 + 45 = 0 \]
Grade

☐ 31. Find the measure of each angle in the given triangle.
Grade All measures are expressed in terms of degrees.

\[\angle A = \ldots \]
\[\angle B = \ldots \]
\[\angle C = \ldots \]
32. Given the right triangle with sides labeled,
 a) using the Pythagorean Theorem, write an equation in terms of \(x \).

 b) Solve the equation. Find the lengths of all three sides.

33. Graph the function \(f(x) = -\frac{1}{x} \). Label at least 5 points.