Part I. Problems in this section are mostly short answer and multiple choice. Little partial credit will be given. 5 points each.

- 1. Factor completely.
 - a) $20x^2 + 18x 18$ b) $x^3 + x^2 4x + 4$

- 2. Find the domain of the function $g(x) = \sqrt{x-2}$.
 - a) $(-\infty, \infty)$
 - b) $(-\infty, 2)$
 - c) $(-\infty, 2]$
 - d) $(2, \infty)$
 - e) [2,∞)
- 3. Use properties of logs to express as a single log. $5\log_a x \log_a(x+2)$

4. Find the quotient and remainder. $(x^3-8) \div (x-2)$

Quotient:

Remainder: _____

- 5. Let f(x) = 2x 4 and $g(x) = x^2 + 2$.
 - a) Find and simplify (f-g)(2).

b) Find and simplify g(f(x)).

6. Solve: $\frac{7}{x-4} - \frac{3}{x+4} = \frac{10}{x^2 - 16}$

7. Find the linear function f such that f(3) = -2 and f(2) = 5.

8. Given the graph of $f(x) = x^2 - 8x$, state all x such that a) f(x) is increasing (use interval notation)

9. Solve for *x*: $y = \frac{5}{3x-2}$

10. Solve <u>algebraically</u>: |3x-2| > 8

11. Graph each function. Label all intercepts and asymptotes.

13. Find a formula for the inverse given $f(x) = \sqrt[3]{\frac{2x-1}{5}}$.

$$f^{-1}(x) =$$

14. Write a polynomial of degree 4 that has 0 as a zero of multiplicity two, -1 and 3 as zeros with multiplicity 1. Write in polynomial form (multiplied out)

Part II. There are 9 problems in this section. Partial credit will be awarded. Show all work. 11 pts. each.

15. Solve: $x^4 - x^2 - 12 = 0$ (Include real and complete solutions.)

Solution(s): *x* = _____.

- 16. Given the function $f(x) = x^2 4x 12$
 - a) State the y-intercept.
 - b) state the zeros of the function.

c) The vertex is (_____, ___).

d) Maximum/minimum value = _____.

e) Graph. Label intercepts and vertex.

- 17. Given the function $f(x) = (x+2)^2(2x-3)(x+5)$
 - a) Find y-intercept.
 - b) Find zeros and state their multiplicities. zero multiplicity
 - c) Is f(x) tangent to the x-axis?If so, where?

e) Sketch graph. Label all intercepts.

- c) Draw ending behavior.
- 18. Given the polynomial $g(x) = x^3 4x^2 + 7x 6$
 - a) state all possible rational zeros.

b) Find all zeros (real and complex.)

- 19. Find all asymptotes, *x*-intercepts, and *y*-intercepts for the graph $f(x) = \frac{4x-1}{x+2}$.
 - a) The equation of the vertical asymptote(s) is/are x =_____.
 - b) The equation of the horizontal asymptote(s) is/are y =_____.
 - c) The *x*-intercept is at the point _____.
 - d) The y-intercept is at the point _____.
 - e) Sketch the graph of f(x). Label all intercepts and asymptotes.

20. Solve the system algebraically.

2x - 3y = 53x + y = -9

21. For each line, give the slope and y-intercept. Give the equation where indicated.

- 22. Solve for *x*.
 - a) $\log_2(2x-1) = 4$ b) $3 \cdot 9^{2x-3} = \frac{1}{27}$

23. Solve $\sqrt{3x+24} = x+2$. Check all solutions.

Part III. There are 6 problems in this section. Choose any 4. Indicate in the boxes the problems you want graded. 8 points each.

Grade? 24. The amount of money in an account t years after invested is given by: $A = 500e^{0.03t}$. Find the amount time it would take the amount to reach \$1500. Leave your answer in exact form since no calculators are allowed. Include units on answer.

 \square 25. The points (-1,7) and (3,1) are the endpoints of the diameter of a circle.

Grade?

a) State the center and the radius.

b) State the equation of the circle in standard form.

- **C** 26. A stone is thrown directly upward. The height of the stone *t* seconds after it has been thrown is given by $s(t) = -16t^2 + 48t + 5$ ft. Show your work algebraically and Include units on answers.
 - a) What is the initial height of the stone?
 - b) Find the time it takes for the stone to reach its maximum height.
 - c) Find the maximum height the stone reaches.

C 27. Solve $x(x-2) \ge 15$ algebraically. Express in interval form. Grade

Final Exam

Page 11

28. Simplify the difference quotient $\frac{f(x+h) - f(x)}{h}$ for $f(x) = 7x - x^2$. Grade

29. Solve and check answers. $log_3(x + 2) + log_3(x) = 2$ Grade