1. Use the graph of \(y = f(x) \) below to estimate each limit if it exists. If the limit does not exist, write “DNE”.

(a) \(\lim_{x \to 1^-} f(x) = \) ______

(b) \(\lim_{x \to 1} f(x) = \) ______

(c) \(\lim_{x \to -1} f(x) = \) ______

(d) \(\lim_{x \to -3^+} f(x) = \) ______

2. Find each limit, if it exits. If the limit does not exist, write “DNE”.

(a) \(\lim_{x \to \infty} \frac{x^3 + x}{6 + 5x^2 - x^3} \)

(b) \(\lim_{x \to -2} \frac{x^2 - 2x - 8}{x^2 - 4} \)
3. Find the derivative of each function. Do not simplify.

(a) \(f(x) = \frac{x^5}{10} - 6\sqrt{x} + 11 \)

(b) \(f(x) = \frac{x^2 - 2x}{3x + 5} \)

(c) \(f(x) = (7 - x)\ln(x^2 + 9) \)

4. Find an equation of the tangent line to the curve \(y = \sqrt{3 + 2x - x^2} \) at the point \((0, \sqrt{3})\).
5. Match each graph below to one of the descriptions.

(a) _______ \(f'(x) < 0 \) and \(f''(x) > 0 \) on \((0, \infty)\)

(b) _______ \(f'(x) > 0 \) and \(f''(x) > 0 \) on \((0, \infty)\)

(c) _______ \(f'(x) < 0 \) and \(f''(x) < 0 \) on \((0, \infty)\)

(d) _______ \(f'(x) > 0 \) and \(f''(x) < 0 \) on \((0, \infty)\)

6. Cycles Inc. determines that in order to sell \(x \) bicycles, the price per bicycle must be

\[p(x) = 300 - 0.1x. \]

It also determines that the total cost of producing \(x \) bicycles is given by

\[C(x) = 180 + 0.2x^2. \]

How many bicycles should this company produce and sell in order to maximize profit? (Recall that the total revenue is \(R(x) = xp(x) \).)
7. Given that \(f(x) = \frac{12x}{x^2 + 3} \), \(f'(x) = -\frac{12(x^2 - 3)}{(x^2 + 3)^2} \) and \(f''(x) = \frac{24x(x^2 - 9)}{(x^2 + 3)^3} \), answer the questions below.

(a) Find the asymptote(s).

(b) Find the interval(s) over which \(f(x) \) is increasing/decreasing.

(c) Find all points where relative maxima and minima occur.

(d) Find the interval(s) over which \(f(x) \) is concave up/concave down.

(e) Find all points of inflection.

(f) Use parts (a) through (e) to sketch \(y = f(x) \). Mark each asymptote using a dashed line.
8. Compute each integral.

(a) \(\int \left(6x^3 - \frac{3}{x^2} + 10 \right) dx \)

(b) \(\int_{0}^{\sqrt{3}} x\sqrt{x^2 + 1} \, dx \)

(c) \(\int_{1}^{e} \frac{(\ln x)^2}{x} \, dx \)

(d) \(\int xe^{-x} \, dx \) (Use integration by parts.)
9. Hugo Ltd. estimates that its sales $S(t)$, in dollars, of apparel will grow continuously at a rate

$$S'(t) = 50e^{2t},$$

where t is in days. Find the accumulated sales from the 2nd day through the 6th day, i.e. from $t = 1$ to $t = 6$.

10. Find the area of the region enclosed by the graphs of $y = x^2 - 2$ and $x + y = 0$.

![Graph of the region enclosed by the curves $y = x^2 - 2$ and $x + y = 0$.]
11. Given \(f(x, y) = x^3 e^{-y^2} + 3x^2 y - 9y^5 \), find:

(a) \(f_y \)

(b) \(f_{yy} \)

12. A one-product company finds that its profit \(P \), in millions of dollars, is given by

\[
P(x, y) = 210 - x^2 y + 2xy + 35y - 2y^2,
\]

where \(x \) is the amount spent on advertising, in millions of dollars, and where \(y \) is the price per item of the product, in dollars. The critical points of the function \(P \) are \((1,9)\) and \((7,0)\). Classify each critical point as a relative maximum, a relative minimum, or a saddle point.
13. Use the method of Lagrange multipliers to find the maximum value of the function

\[f(x, y) = 3xy, \]

where \(x > 0 \) and \(y > 0 \), subject to the constraint

\[x^2 + 3y = 3. \]