MATH 108 – REVIEW TOPIC 11

Irrational Equations

Introduction

Any equation where the variable is inside a radical is called an irrational equation (numbers inside radicals like $\sqrt{2}$ or $\sqrt[3]{4}$ are irrational numbers). When solving an irrational equation, the key step will be removing the radical.

Example: Solve $3\sqrt{x} - 4 = 5$.

Let's compare this equation to a quadratic of similar form:

In both problems we disregard the exponent and isolate the variable. Exponents are then removed using reciprocal powers, i.e. $\left[(\)^{m/n}\right]^{n/m} = (\)$.

Example: Solve $3x^{2/3} = 12$.

Solution:
$$3x^{2/3} = 12 \Rightarrow x^{2/3} = 4$$

 $\Rightarrow (x^{2/3})^{3/2} = 4^{3/2}$
 $\Rightarrow x = (4^{1/2})^3 = (\pm 2)^3 = \pm 8$

Exercise 1: Solve $\sqrt[3]{2x-5} = 3$.

Warning: Mistakes in radical equations are often the result of not distinguishing between powers of sums versus products.

Answer

Illustration:

Product:
$$(ab)^m = a^m b^m$$
, $(2\sqrt{x})^2 = 4x$
Sum: $(a+b)^m \neq a^m + b^m$, $(2+\sqrt{x})^2 = 4 + 4\sqrt{x} + x$

Because of these differences, a problem like $3 + \sqrt{3x + 1} = x$ can easily be missed. Let's discuss this problem in detail.

Example: Solve $3 + \sqrt{3x + 1} = x$.

One approach would be to square each side of the equation immediately, expecting to remove the radical.

$$(3 + \sqrt{3x + 1})^2 = x^2$$

$$\Rightarrow \qquad 3^2 + 2(3)\sqrt{3x + 1} + (\sqrt{3x + 1})^2 = x^2 \qquad (a + b)^2 = a^2 + 2ab + b^2$$

$$\Rightarrow \qquad 9 + 6\sqrt{3x + 1} + 3x + 1 = x^2.$$

Comment: Up to this point the algebra is correct, but the radical is still present. Let's start over ...

$$3 + \sqrt{3x + 1} = x \Rightarrow \sqrt{3x + 1} = x - 3$$

$$\Rightarrow 3x + 1 = (x - 3)^{2}$$

$$\Rightarrow 3x + 1 = x^{2} - 6x + 9$$

$$\Rightarrow 0 = x^{2} - 9x + 8$$

$$\Rightarrow x = 8, x = 1$$

See the benefits
of isolating the
radical

Check:

if
$$x = 8$$
, $3 + \sqrt{25} = 8$
if $x = 1$, $3 + \sqrt{4} \neq 1$.

Therefore, the only solution is x = 8.

Raising expressions to powers can lead to additional (extraneous) solutions. You must check to be certain which values are true solutions.

PRACTICE PROBLEMS for Topic 11

Solve the equations.

11.1.
$$x^{2/3} = 16$$

11.2. $x^{-1/2} = 4$
11.3. $2\sqrt{2x-9} - 4 = 0$
11.4. $(2x^2+1)^{1/5} = 2$
11.5. $\sqrt{7-x} = x - 5$
11.6. $x + \sqrt{5x+19} = -1$
11.7. $\sqrt{2\sqrt{x+1}} = \sqrt{3x-5}$

Answers

ANSWERS to PRACTICE PROBLEMS (Topic 11)

11.1.
$$x = 16^{3/2} = (\pm 4)^3 = \pm 64$$

Return to Problem

11.2.
$$x = 4^{-2} = \frac{1}{16}$$

Return to Problem

11.3.
$$\sqrt{2x-9} = 2 \Rightarrow 2x-9 = 4 \Rightarrow x = \frac{13}{2}$$

Return to Problem

11.4.
$$(2x^2 + 1) = 32 \Rightarrow x^2 = \frac{31}{2} \Rightarrow x = \pm \frac{\sqrt{62}}{2}$$

Return to Problem

11.5. $7 - x = x^2 - 10x + 25 \Rightarrow x^2 - 9x + 18 = 0 \Rightarrow x = 6$ or x = 3. x = 3 is extraneous, x = 6 is the only solution.

Return to Problem

$$\sqrt{5x + 19} = -1 - x$$

$$\Rightarrow 5x + 19 = (-1 - x)^2$$

$$\Rightarrow 5x + 19 = 1 + 2x + x^2$$

$$\Rightarrow 0 = x^2 - 3x - 18$$

$$\Rightarrow x = 6 \text{ or } x = -3$$

Check:

if
$$x = -6$$
, $6 + \sqrt{49} \neq -1$; $x = 6$ is extraneous,
if $x = -3$, $-3 + \sqrt{4} = -1$; $x = -3$ is the only root.

Return to Problem

11.7.
$$2\sqrt{x+1} = 3x - 5$$

$$\Rightarrow \quad 4(x+1) = 9x^2 - 30x + 25 \qquad (ab)^2$$

$$\Rightarrow \qquad 0 = 9x^2 - 34x + 21$$

$$\Rightarrow \qquad 0 = (9x - 7)(x - 3)$$

$$\Rightarrow \qquad x = 7/9 \text{ or } x = 3$$

Quad
x =

only x = 3 checks.

$$(ab)^2 = a^2b^2$$
, $(a+b)^2 = a^2 + 2ab + b^2$

Quadratic formula leads to $x = \frac{34 \pm \sqrt{400}}{18}$ and same result.

Return to Problem

Beginning of Topic 10

108 Skills Assessment

Solve $\sqrt[3]{2x-5} = 3$.

Answer:

$$(2x - 5)^{1/3} = 3$$
$$[(2x - 5)^{1/3}]^3 = 3^3$$
$$2x - 5 = 27$$
$$x = 16$$

We rewrote the radical to emphasize the use of reciprocal powers.

Return to Review Topic