MATH 108 - REVIEW TOPIC 2

Exponents

- I. Counting Factors and Laws of Exponents
- II. Negative Exponents
- III. Rational Exponents
- IV. Evaluating Logs

Answers to Exercises

I. Counting Factors and Laws of Exponents

What is the purpose of an exponent? The expression b^n indicates that b(called the base) is a factor n times.

Illustration:

$$x^4$$
 means x is a factor 4 times or $x \cdot x \cdot x \cdot x$
 $(x-2)^{10}$ means $(x-2)$ is a factor 10 times.

To "simplify", express the total number of factors with a single exponent.

Example:

How factor is counted

a)
$$x^4 \cdot x^3 = \underbrace{x \cdot x \cdot x \cdot x}_{x \cdot x \cdot x} \cdot \underbrace{x \cdot x \cdot x}_{x \cdot x \cdot x} = x^7$$
 x is a factor $(4+3)$ times
b) $\frac{x^{25}}{x^{10}} = \underbrace{\left(\begin{array}{c} x^{10} \\ x^{10} \end{array}\right)}_{x^{15}} x^{15} = x^{15}$ x is a factor $(25-10)$ times
c) $(x^3)^4 = x^3 \cdot x^3 \cdot x^3 \cdot x^3 = x^{12}$ x^3 is a factor 4 times so x is a factor (3×4) times
d) $(xy)^3 = xy \cdot xy \cdot xy = x^3y^3$ xy is a factor 3 times so x AND

y are factors 3 times

Based on these examples, we now state the Laws of Exponents.

$$\begin{aligned} x^{m} \cdot x^{n} &= x^{m+n} & (xy)^{n} &= x^{n}y^{n} \\ \frac{x^{m}}{x^{n}} &= x^{m-n} & \left(\frac{x}{y}\right)^{n} &= \frac{x^{n}}{y^{n}} \\ (x^{m})^{n} &= x^{m \times n} \end{aligned}$$
Rather than just memorize, think of these laws as a quick way to count factors. Once that

happens, the laws become **logical** and errors are eliminated.

Exercise 1. Express in simplest form:

a)
$$x^4(x^{10})$$
 (e) $2x^3(-x^2)^6$
b) $(x^4)^{10}$ (f) $\frac{6x^8}{(4x^3y^2)^2}$
c) $\frac{x^4}{x^{10}}$ (g) $-3x^5(2x)(4x^2) + (3x^2)^4$
d) $\frac{10^6}{5^8}$ Hint: $10^6 = (2 \cdot 5)^6$ (h) $-6x^7 + x^5$ Answers

II. Negative Exponents

If exponents and laws of exponents count factors for positive exponents, what does a negative or zero exponent count? This is a hard question to answer logically so forgive us for just giving definitions.

Def:
$$()^{0} = 1 \text{ for all } ()$$

Def: $()^{-m} = \frac{1}{()^{m}}; \quad \frac{1}{()^{-m}} = \frac{1}{\frac{1}{()^{m}}} = ()^{m}$

We are using () instead of a variable.

Illustration:

a) $4^0 = 1; (2+x)^0 = 1$ ()⁰ = 1

b)
$$(5)^{-2} = \left(\frac{1}{5^2}\right) = \frac{1}{25}; \ 4x^{-3} = 4\left(\frac{1}{x^3}\right) = \frac{4}{x^3}$$
 $()^{-m} = \frac{1}{()^m}$

c)
$$\frac{-2}{3x^{-4}} = -\frac{2}{3}\left(\frac{1}{x^{-4}}\right) = -\frac{2}{3}(x^4) = -\frac{2x^4}{3}$$
 $\frac{1}{()^{-m}} = ()^m$

Keep the following in mind when simplifying expressions with negative exponents:

1) Exponent laws do not depend on the type of exponent.

$$(x^{-2})^{-4} = x^8$$
 just like $(x^3)^5 = x^{15}$

2) In a simplified answer all exponents are positive.

$$x^{-4} \cdot x^2 = x^{-2} = \frac{1}{x^2}$$

Examples: Express in simplest form.

a)
$$\frac{4a^{-2}}{3^{-1}b^4}$$
 b) $(x^{-2}y^4)(x^{-3}y^{-4})$ c) $(-2a^4b^{-1})^{-3}$

Solutions.

a)
$$\frac{4a^{-2}}{3^{-1}b^4} = \frac{4\cdot 3}{a^2b^4} = \frac{12}{a^2b^4}$$

b)
$$(x^{-2}y^4)(x^{-3}y^{-4}) = x^{-5}y^0$$

= $\frac{1}{x^5} \cdot 1$
= $\frac{1}{x^5}$

c)
$$(-2a^4b^{-1})^{-3} = (-2)^{-3}a^{-12}b^3$$

= $\frac{1}{(-2)^3} \cdot \frac{1}{a^{12}} \cdot b^3$
= $-\frac{b^3}{8a^{12}}$

 $\frac{1}{3^{-1}} = 3, a^{-2} = \frac{1}{a^2}$

Applying exponent laws **before** manipulating to change negative exponents is the simplest approach.

Exercise 2. Express in simplest form.

a)
$$(8a^{3}b^{-2})\left(-\frac{1}{2}a^{4}b\right)$$

b) $(4x^{-3}y^{2})^{-2}$
c) $-2x(3x^{-1}y)^{3}$
d) $\frac{-3m^{-4}n^{2}}{9m^{-1}n^{-2}}$
e) $\frac{(2x^{-3}y)^{4}}{-4x^{3}y^{5}}$

Answers

III. Rational Exponents

Rational (meaning fractional) exponents obey the same laws of exponents.

Illustration:

$$x^{1/2} \cdot x^{1/3} = x^{1/2+1/3} = x^{5/6} \qquad x^m \cdot x^n = x^{m+n}$$

$$(x^{1/2})^4 = x^{1/2(4)} = x^2 \qquad (x^m)^n = x^{m \times n}$$

$$\frac{x}{x^{1/3}} = x^{1-(1/3)} = x^{2/3} \qquad \frac{x^m}{x^n} = x^{m-n}$$

Exercise 3. Simplify.

a)
$$x^{-1/3} \cdot x^{1/2}$$

b) $(a^{-2}b^6)^{-1/3}$
c) $\left(\frac{x^{-4}y}{x^2}\right)^{-3/2}$
d) $\frac{(x^6y^3)^{-2/3}}{(x^{-2}y^4)^{1/2}}$ Answers

IV. Evaluating Logs

No study of exponents is complete without some mention of logarithms. The expression $\log_a b = x$ in words is read as "log of b to the base a = x". What does this mean?

Answer: $\log_a b = x$ means $a^x = b$.

Using blanks, $\log_a b = (\)$ is equivalent to $a^{(\)} = b$.

Illustration:

$$\log_2 8 = ?$$
 means $2^? = 8$. Thus $\log_2 8 = 3$ since $2^3 = 8$.
 $\log_5 \frac{1}{25} = ?$ means $5^? = \frac{1}{25}$. Thus $\log_5 \frac{1}{25} = -2$ since $5^{-2} = \frac{1}{25}$.

Exercise 4. Evaluate the following.

Beginning of Topic

108 Skills Assessment

Express in simplest form:

a)
$$x^{4}(x^{10})$$
 (e) $2x^{3}(-x^{2})^{6}$
b) $(x^{4})^{10}$ (f) $\frac{6x^{8}}{(4x^{3}y^{2})^{2}}$
c) $\frac{x^{4}}{x^{10}}$ (g) $-3x^{5}(2x)(4x^{2}) + (3x^{2})^{4}$
d) $\frac{10^{6}}{5^{8}}$ Hint: $10^{6} = (2 \cdot 5)^{6}$ (h) $-6x^{7} + x^{5}$

Answers:

- a) x^{14}
- b) x^{40}

c)
$$\left(\frac{x^4}{x^4}\right) \cdot \frac{1}{x^6} = \frac{1}{x^6}$$

d)
$$\frac{2^6 \cdot 5^6}{5^8} = \frac{2^6}{5^2} = \frac{64}{25}$$

e)
$$2x^3(x^{12}) = 2x^{15}$$

f)
$$\frac{6x^8}{16x^6y^4} = \frac{3x^2}{8y^4}$$

- g) $-24x^8 + 81x^8 = 57x^8$
- h) Already in simplest form. Sorry for trying to trick you.

Express in simplest form.

a)
$$(8a^{3}b^{-2})\left(-\frac{1}{2}a^{4}b\right)$$

b) $(4x^{-3}y^{2})^{-2}$
c) $-2x(3x^{-1}y)^{3}$
d) $\frac{-3m^{-4}n^{2}}{9m^{-1}n^{-2}}$
e) $\frac{(2x^{-3}y)^{4}}{-4x^{3}y^{5}}$

Answers:

a)
$$-4a^7b^{-1} = -\frac{4a^7}{b}$$

b)
$$4^{-2}x^6y^{-4} = \frac{x^6}{16y^4}$$

c)
$$-2x(27x^{-3}y^3) = -54x^{-2}y^3 = -\frac{54y^3}{x^2}$$

c

d)
$$-\frac{1}{3}m^{-3}n^4 = -\frac{n^4}{3m^3}$$

e)
$$\frac{16x^{-12}y^4}{-4x^3y^5} = -4x^{-15}y^{-1} = -\frac{4}{x^{15}y}$$

Simplify.

- a) $x^{-1/3} \cdot x^{1/2}$
- b) $(a^{-2}b^6)^{-1/3}$

c)
$$\left(\frac{x^{-4}y}{x^2}\right)^{-3/2}$$

d) $\frac{(x^6y^3)^{-2/3}}{(x^{-2}y^4)^{1/2}}$

Answers:

a)
$$x^{-1/3+1/2} = x^{1/6}$$

b) $a^{2/3}b^{-2} = \frac{a^{2/3}}{b^2}$
c) $\left(\frac{y}{x^6}\right)^{-3/2} = \left(\frac{x^6}{y}\right)^{3/2} = \frac{x^9}{y^{3/2}}$

d)
$$\frac{x^{-4}y^{-2}}{x^{-1}y^2} = \frac{1}{x^3y^4}$$

Evaluate the following.

a)
$$4^{3} =$$
____; $\log_{4} 64 =$ ____
b) $2^{5} =$ ___; $\log_{2} 32 =$ ____
c) $4^{-2} =$ ___; $\log_{4} \frac{1}{16} =$ ____
d) $\log_{2} 16 =$ ____
e) $\log_{1/3} 9 =$ ____
f) $\log_{2} \frac{1}{8} =$ ____
g) $\log_{10} 1000 =$ ____
h) $\log_{10} .01 =$ ____
Answers:
a) $64; 3$
b) $32; 5$
c) $\frac{1}{16}; -2$
d) 4
e) $-2; \left(\frac{1}{3}\right)^{-2} = 9$
f) $-3; 2^{-3} = \frac{1}{8}$
g) 3
h) -2

NOTE: Base 10 logs are called common logs and have their own special notation. $\log_{10} a$ is written as $\log a$. Thus $\log 1000 = 3$ and $\log .01 = -2$.