Part 1: Compute the following. Show all work for credit. 2 points each.

1) \(\frac{-3^2}{7} = \)

2) \(\frac{-3}{4} \div \left(\frac{-9}{8} \right) = \)

3) \(-|3 + 6| = \)

4) \(\frac{1}{4} + \frac{2}{3} - \frac{5}{2} = \)

5) \(16 \div 4 - 2 \cdot 3^2 = \)

6) \(4^{-2} + 4 = \)

7) \(\frac{21}{2} \times \frac{4}{3} = \)

8) \(4^2 = \)

9) \(12.9 - 1.01 = \)

10) \(21 \cdot 0 \cdot (5 + 4) = \)

Put answers HERE!!
Part II. Show all work for possible partial credit. 5 points each.

11. Solve the equation for x.

\[5x = 2(3 - 5x) - 5 \]

12. Solve the inequality. Give the solution set in both interval and graph forms.

\[\frac{2}{3}x \geq -4 \]

Graph solution:

Interval notation:

13. Graph the given line. **Label all intercepts.**

\[3x + 7y = 4 \]
14. Graph the line that has a \(y \)-intercept of \((0,4)\) and a slope of \(\frac{1}{3}\).
 Label at least 2 points.

15. Find the product and simplify: \((x - \sqrt{y})(x - \sqrt{y})\)

16. Simplify the expression: \(\frac{1}{2} \cdot \frac{3}{6x} + \left(\frac{3}{3x}\right)\)

17. Simplify using **only positive exponents**. Assume all variables represent positive real numbers.
 \[
 \frac{2x^5 \cdot 3^{-2}}{(x^{-2})^3}
 \]
Factor completely, write prime if it can't factor:

18. \(3y^2 - 11y - 20\)

19. \(2x^3 - 50x\)

20. \(2a^3 + a^2 - 14a - 7\)

21. Express and simplify in lowest terms: \(\frac{x^2 - 9}{x^2 - x - 6}\)

22. Solve: \(x^2 - 81 = 0\).

23. Find the slope of the line through the points \((4, -1)\) and \((-3, 4)\).

24. Given \(C = \frac{5}{9}(F - 32)\), solve for \(F\).
25. For the given right triangle, find \(x \). You must set up and solve an equation for credit.

\[\frac{3x - 5}{3} + \frac{x + 4}{4} = 1 \]

26. Solve for \(x \).

\[14 + 4 \frac{3}{5} = \frac{x}{2} \]

27. Multiply and simplify:

\[\frac{4x - 20}{5x} \cdot \frac{4x^4}{10 - 2x} \]
28. Choose a domain for each function. Write the correct number in the answer blank.

 a) \(f(x) = \frac{4}{x - 3} \) \hspace{1cm} Answer ________

 1) \((-\infty, \infty)\)
 2) \((0, \infty)\)
 3) \((9, \infty)\)
 4) \([3, \infty)\)
 5) \((-\infty,3) \cup (3, \infty)\)
 6) Not listed.

 b) \(g(x) = \sqrt{x} - 3 \) \hspace{1cm} Answer ________

 The point slope form is \(y - \) _____ = ____\((x - \) ____)_.

 c) \(h(x) = \sqrt{x} - 3 \) \hspace{1cm} Answer ________

29. Find the equation of the line passing through \((-2,-1)\) with slope 5.

 The slope intercept form is \(y = \) _____ \(x + \) _____.

30. For the following pair of functions, find the following. Be sure to express in simplest form.
 \(f(x) = 4x - 3 \) and \(g(x) = -2x^2 + 2x + 6 \)

 (a) \((f - g)(3) = \)

 (b) \((f + g)(x) = \)

31. Perform the indicated operation. Reduce to lowest terms.
 \[
 \frac{2}{x - 2} - \frac{5}{x^2 - 2x}
 \]
32. Express the radical in simplified form. Assume that all variables represent positive real numbers.

a) \(\sqrt[4]{\frac{25a^6}{81b^{10}}} \)

b) \(2\sqrt{24} + \sqrt{54} \)

33. Graph the function by creating a table of ordered pairs:

\(f(x) = x^2 + 2 \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2)</td>
<td>(6)</td>
</tr>
<tr>
<td>(4)</td>
<td>(8)</td>
</tr>
<tr>
<td>(6)</td>
<td>(10)</td>
</tr>
<tr>
<td>(8)</td>
<td>(12)</td>
</tr>
<tr>
<td>(10)</td>
<td>(12)</td>
</tr>
</tbody>
</table>

34. Complete the following table.

<table>
<thead>
<tr>
<th>Inequality(set)</th>
<th>Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) (x < 5)</td>
<td>((-\infty, 5))</td>
</tr>
<tr>
<td>b) () ((-\infty, 2))</td>
<td></td>
</tr>
<tr>
<td>c) (-3 < x \leq 1)</td>
<td>((-3, 1])</td>
</tr>
<tr>
<td>d) (x \neq 2)</td>
<td>()</td>
</tr>
</tbody>
</table>
35. Solve for \(x \). \[x^3 - 14x^2 + 45x = 0 \]

36. Solve for \(p \) algebraically. \[\sqrt{5p + 6} = p \]
Remember to check.

37. Given \(f(x) = x^2 - 3x + 2 \), evaluate

 a) \(f(-2) \)

 b) \(f(2p) \)
Part IV. Choose 3 of the following 5 problems. You must indicate the 3 problems to be graded. If not, we will grade the first three. Show all work for possible partial credit. 7 points each.

☐ 38. Solve for x and simplify answers. $x^2 - 6x + 3 = 0$

Grade

Grade

☐ 40. How many gallons of 40% antifreeze must be mixed with 10 gallons of 70% solution to get a 50% solution? Must set up equation(s) and/or table for credit.

Grade
41. The base of a parallelogram is 5 feet more than the height. If the area of the parallelogram is 36 ft.\(^2\), what are the measures of the base and height?

SET UP AND SOLVE AN EQUATION FOR CREDIT!

area of parallelogram = base times height

42. Graph the function \(f(x) = \frac{3}{x} \). Label at least 5 pts.