
THE LANGLANDS CLASSIFICATION FOR
NON-CONNECTED p-ADIC GROUPS
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Abstract. We give the Langlands classification for a non con-
nected reductive quasi-split p-adic group G, under the assump-
tion that G/G0 is abelian (here G0 denotes the connected com-
ponent of the identity of G). The Langlands classification for
non-connected groups is an extension of the Langlands classifi-
cation from the connected case.

1. Introduction

Suppose G is the F -points of a connected, reductive group defined
over a nonarchimedean local field F . The Langlands classification
(cf. [S], [B-W]) gives a bijective correspondence

Irr(G)←→ Lang(G)

between irreducible, admissible representations of G and triples of
Langlands data. In this paper, we extend the Langlands classification
to cover the case where G is the F -points of a non-connected, quasi-
split, reductive group over F , subject to the condition G/G0 is finite
and abelian (finiteness being automatic, cf. 7.3 [Hu]). The result is
given as Theorem 4.2.

The Langlands classification was originally done in the context
of connected real groups (cf. [L]). This has been extended to non-
connected real groups in [M]. In [M], the Langlands classification
is essentially reproven under weaker hypotheses. Our approach is
different–our results do not contain the connected case as a special
case, but rather, they use the connected case as a starting point.
In particular, following the lead of [Go], [Go-H], we use a lemma of
[G-K] to move from the connected case to the non-connected case.
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Let us now give a rough idea of how the proof goes. For simplic-
ity, let us assume G/G0 has prime order and G = G0 ⋊ C , C the
component group. We take representatives for C which stabilize the
Borel subgroup of G0. Let π be an irreducible admissible represen-
tation of G; π0 an irreducible (admissible) representation of G0 with
π0 ⊂ ResG

G0(π). We shall describe how to use the Langlands data
for π0 to obtain Langlands data for π. Write π0 = L(P, ν, τ ), where
(P, ν, τ ) is the Langlands data for π0. We note that P = MU is a
parabolic subgroup of G, ν ∈ a

∗
− (a = Lie(A), where A is maximal

split torus in the center of M), and τ is an irreducible, tempered
representation of M . It is worth noting that we work in the subrep-
resentation setting of the Langlands classification, hence the presence
of a

∗
− rather than a

∗
+. (See Remark 4.2 for a discussion of the Lang-

lands classification in the quotient setting.) For this discussion, let us
write M0 instead of M , thereby freeing us to use M for its (possibly
non-connected) counterpart in G.

At this point, there are two possibilities: either ResG
G0(π) is re-

ducible or irreducible. First, let us suppose it is reducible. By a
corollary of a lemma from [G-K], given as Lemma 2.1 in this paper,
we have

ResG
G0(π) =

⊕
c∈C

c · π0

and

π ∼= IndG
G0(c · π0)

for all c ∈ C . Further, we note that

c · π0 = L(c · P, c · ν, c · τ )

for all c ∈ C (cf. Proposition 4.5). Now, suppose c · P 6= P when
c 6= 1. In this case, our definition of Langlands data–and more pre-
cisely, our definition of standard parabolic subgroups–singles out one
parabolic subgroup from {c · P} (these are non-conjugate in G0 but
conjugate in G), call it c0 · P . The Langlands data for π is then
c0 · (P, ν, τ ). Next, suppose c ·P = P for all c ∈ C , but c ·ν 6= ν when
c 6= 1. In this case, C acts on a

∗, subdividing a
∗
− into subchambers.

Our definition of Langlands data singles out one of these as negative.
Then, there is a c0 ∈ C such that c0 · ν lies in this subchamber. The
Langlands data for π is then c0 · (P, ν, τ ). Finally, suppose c ·P = P ,
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c · ν = ν for all c ∈ C , but c · τ 6∼= τ . In this case, it follows from the
Lemma 2.1 that

IndM
M0(τ ) ∼= τ ′,

with τ ′ an irreducible representation of M = M0 ⋊ C . In this case,
our Langlands data for π is (P ⋊ C, ν, τ ′). We note that it follows
from the Lemma 2.1 and Proposition 4.5 that these three possibilities
are the only possibilities which have ResG

G0(π) reducible.
Now, we consider the case where ResG

G0(π) is irreducible. In this
case,

ResG
G0(π) = π0

and

IndG
G0(π0) =

⊕
χ∈Ĝ/G0

χ · π

where Ĝ/G0 consists of characters of G which are trivial on G0. For
this to be the case, we must have c · P = P , c · ν = ν, and c · τ ∼= τ
for all c ∈ C (by Lemma 2.1 and Proposition 4.5). In this case, it
follows that

IndM
M0(τ ) =

⊕
χ∈M̂/M0

χ · τ ′,

where τ ′ is an irreducible component of IndM
M0(τ ). The Langlands

data for π is then (P ⋊ C, ν, χτ ′) for an appropriately chosen χτ ′.
To deal with the case when G/G0 has order which is not prime,

we take a filtration

G0 = G1 ⊂ G2 ⊂ · · · ⊂ Gk = G

where Gi/Gi−1 has prime order. We can then use the above argu-
ment in an inductive fashion. Not surprisingly, the starting point for
this inductive argument is the Langlands classification in the case of
connected groups.

We now discuss the results section by section. In the next section,
we give notation and preliminaries. The third section discusses the
parabolic subgroups needed. In the fourth section, we give the state-
ment and proof of the Langlands classification for the non-connected
groups under consideration.
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We make one additional remark. Part of our interest in this project
is its applications to O(2n, F ). Because of certain structural sim-
ilarities to Sp(2n, F ) and SO(2n + 1, F ) (e.g., compare [T1] and
[B]), many results which hold for these latter two families of classical
groups should also hold for O(2n, F ). But, in order to capitalize on
these similarities, some of the machinery which holds for connected
groups must be extended to the non-connected case. One such piece
of machinery is the Langlands classification, the subject of this paper.
We note that in order to make it as easy as possible to extend results
such as [T2], [J1], etc., from Sp(2n, F ), SO(2n + 1, F ) to O(2n, F ),
it is advantageous to have the Langlands classification for O(2n, F )
in a form similar to that for Sp(2n, F ), SO(2n+1, F ). Therefore, at
certain points in this paper where we need to make arbitrary choices
(e.g., XC and a

∗
−(C) in section 3), we make the choice which makes

it easiest to get this similar form.
A brief discussion of the hypotheses is in order. Our results are

based largely on the Langlands classification in the connected case
([B-W], [S]; our point-of-view is closer to [S]) and the results in section
2 [G-K]. Thus, since [B-W], [S] work in the context of reductive groups
over nonarchimedean local fields and section 2 [G-K] works in the
context of totally disconnected groups, we can allow charF 6= 0.
On the other hand, while neither of these requires the group to be
quasi-split, it is a convenient assumption for us: we then have a Borel
subgroup and can choose representatives for G/G0 which fix the Borel
subgroup (under conjugation), act on the simple roots, etc.

The authors would like to take this opportunity to thank Guy
Henniart and the referee for valuable comments and corrections.

2. Notation and preliminaries

In this section, we introduce notation and give some background
results. In particular, the main technical lemma (Lemma 2.1; a con-
sequence of [G-K]) and the definition of tempered we need (Definition
2.5) are given in this section.

Let F be a p-adic field and G the group of F -points of a quasi-
split reductive algebraic group defined over F . Let G0 denote the
connected component of the identity in G. We shall assume that

C = G/G0
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is a finite abelian group.

In the group G0, fix a Borel subgroup P∅ ⊂ G0 and a maximal
split torus A∅ ⊂ P∅. We let Π denote the corresponding set of simple
roots. For Φ ⊂ Π, we let PΦ = MΦUΦ denote the standard parabolic
subgroup determined by Φ.

Let P = MU ⊂ G0 be a standard parabolic subgroup of G0, A the
split component of the center of M , X(M)F the group of F -rational
characters of M . Let

a = Hom(X(M)F , R) = Hom(X(A)F , R)

be the real Lie algebra of A and

a
∗ = X(M)F ⊗Z R = X(A)F ⊗Z R

its dual. There is a homomorphism (cf. [H]) HM : M → a such that

q〈χ,HM(m)〉 = |χ(m)|

for all m ∈M, χ ∈ X(M)F . Given ν ∈ a
∗, let us write

exp ν = q〈ν,HM(·)〉

for the corresponding character.

Before we go into notation and basic definitions for G, we need to
do a couple of things. First, we fix a choice of representatives for
G/G0 which stabilize the Borel subgroup, hence act on the simple
roots. By abuse of notation, we use C for both the component group
G/G0 and this set of representatives. Also, we want the inner product
on a

∗
0 to be C-invariant. If the standard inner product 〈 , 〉0: a

∗
0×a

∗
0 →

R is not, we can replace it with
∑

c∈C c · 〈 , 〉0 , where c · 〈x, y〉0 =
〈c · x, c · y〉0 for x, y ∈ a

∗
0.

Suppose that G1, G2 are subgroups of G, G0 ≤ G1 ≤ G2 ≤ G. We
will use the notation iG2,G1

and rG1,G2
for induction and restriction of

representations: If (σ, V ) is an admissible representation of G1, then
iG2,G1

(σ) is the representation of G2 given by right translations on
the space

V ′ = {f : G2 → V | f(g1g) = σ(g1)f(g), g ∈ G2, g1 ∈ G1}.

For an admissible representation π of G2, rG1,G2
(π) = π|G1

.
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Set D = G2/G1. If π1 is an irreducible representation of G1 and
d ∈ D, we define d · π1 by

d · π1(g) = π1((d
′)−1gd′),

for all g ∈ G1, where d′ ∈ G2 is a representative of d. The equivalence
class of d · π1 does not depend on choice of a representative d′.

Let D̂ denote the set of all characters of D. If χ ∈ D̂, then we can
think of χ as a character of G2 which is trivial on G1. According to
[G-K] and [Go-H], we have the following properties of rG1,G2

(π2).

Lemma 2.1. Suppose that D = G2/G1 is of prime order. Then for
any irreducible admissible representation π2 of G2, the representation
rG1,G2

(π2) is of multiplicity one. If π1 is an irreducible component of
rG1,G2

(π2), then π is an admissible representation of G1 and either

1.

rG1,G2
(π2) = π1, iG2,G1

(π1) ∼=
⊕
χ∈D̂

χ⊗ π2,

with {χ⊗ π2}χ∈D̂ pairwise inequivalent, or
2.

rG1,G2
(π2) =

⊕
d∈D

d · π1, iG2,G1
(d · π1) ∼= π2, ∀d ∈ D,

where {d · π1}d∈D are pairwise inequivalent.

Proof. These claims follow from the results in section 2 [G-K] in
essentially the same way that Lemmas 2.12 and 2.13 [Go-H] do. (The
main difference here is that we are not assuming G1 = G0.)

To define supercuspidality (square-integrability, temperedness) of
an irreducible representation π of G, we will look at the components
of rG0,G(π). In order for our definitions to make sense, we first need
to establish certain properties about Haar measure.

Let µ denote a Haar measure on G0. For c ∈ C , we define

(µ ◦ c)(S) = µ(cSc−1),

for S ⊂ G0 a measurable set.

Lemma 2.2. µ ◦ c = µ.
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Proof. First, since µ ◦ c is invariant under left translations, it is a
Haar measure on G0. Therefore, there exists a positive real number
λ such that µ ◦ c = λµ. To see that λ = 1, let K be a compact open
subgroup of G0. Then

K1 =
⋂
d∈C

(dKd−1)

is an open compact subgroup of G0, and (µ ◦ c)(K1) = µ(K1). It
follows that λ = 1.

Let Z denote the center of G0, c ∈ C . For z ∈ Z, an easy check
tells us czc−1 ∈ Z. Hence, cZc−1 = Z. If µ̄ denotes the quotient
measure on G0/Z, we may now define µ̄ ◦ c as above.

Corollary 2.3. µ̄ ◦ c = µ̄.

Proposition 2.4. Let π be an irreducible representation of G0, c ∈
C. Then π is square-integrable (resp., tempered) if and only if c · π
is square-integrable (resp., tempered).

Proof. Let V be the space of representation π, v ∈ V, ṽ ∈ Ṽ . Let
fv,ṽ denote the matrix coefficient of π associated to v and ṽ:

fv,ṽ(g) = 〈π(g)v, ṽ〉

for all g ∈ G0 (cf. [C]). Then c·fv,ṽ, defined by c·fv,ṽ(g) = fv,ṽ(c
−1gc)

for all g ∈ G0, is a matrix coefficient of c · π. By the preceding
corollary,∫

G0/Z

|c · fv,ṽ|
2dµ̄ =

∫
G0/Z

|fv,ṽ|
2d(µ̄ ◦ c) =

∫
G0/Z

|fv,ṽ|
2dµ̄.

Thus c · fv,ṽ ∈ L2(G0/Z) if and only if fv,ṽ ∈ L2(G0/Z). For tem-
peredness, we just replace L2 by L2+ε.

The following is now well-defined:

Definition 2.5. Let π be an irreducible admissible representation of
G. Let us call π supercuspidal (resp., square-integrable, tem-
pered) if the components of rG0,G(π) are supercuspidal (resp., square-
integrable, tempered).
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Remark 2.1. In terms of matrix coefficients, we have essentially
defined π to be supercuspidal (resp., square-integrable, tempered) if
its matrix coefficients are compactly supported in G/Z (resp., lie in
L2(G/Z), L2+ε(G/Z)), where Z is the center of G0. This avoids
certain problems which arise if the centers of G and G0 are different
(cf. [Go-H]).

3. Parabolic subgroups

In this section, we introduce the standard parabolic subgroups of
G which will be needed later (Definition 3.1). We also introduce the
subchamber a

∗
−(C) in the dual of the Lie algebra of A, which plays

the same role in the Langlands classification for G that a
∗
− plays in

the Langlands classification for G0.

Let PΦ = MΦUΦ ⊂ G0 be the standard parabolic subgroup of G0

corresponding to Φ ⊂ Π. Let

C(Φ) = {c ∈ C| c ·Φ = Φ}.

We let

MΦ,C(Φ) = 〈MΦ, C(Φ)〉,

noting that our earlier abuse of notation allows us to interpret C(Φ)
as a subset of the representatives for C . More generally, if D ⊂ C(Φ),
we let

MΦ,D = 〈MΦ, D〉

(note that MΦ,1 = MΦ). Suppose that M satisfies

MΦ ≤ M ≤ MΦ,C(Φ)

(such an M has the form MΦ,D). We will consider subgroups of
the form P = MU = MΦ,DUΦ. We write PΦ,D = MΦ,DUΦ. Since
M normalizes U , we can define functors iG,M and rM,G as in [B-Z].
If (σ, W ) is a smooth representation of M , we define the induced
representation iG,M (σ) as follows: The group G acts on

{f : G→W | f(umg) = δ
1/2
P (m)σ(m)f(g), u ∈ U, m ∈M, g ∈ G}

by the right translations

(Rgf)(x) = f(xg), x, g ∈ G;
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the smooth part of this representation is iG,M(σ). If (π, V ) is a
smooth representation of G, the representation rM,G(π) acts on the
space

VU = V/V (U),

where
V (U) = spanC{π(u)v − v| u ∈ U, v ∈ V }.

The action of m ∈M on VU is given by

rM,G(π)(m)[v + V (U)] = δ
−1/2
P (m)[π(m)v + V (U)].

The standard properties of the functors iG,M and rM,G are described
in Proposition 1.9. [B-Z].

In G0, the standard parabolic subgroups are non-conjugate. We
would like to arrange this for G as well. Observe that for any c ∈ C ,
we have

cMΦc−1 = Mc·Φ,

cC(Φ)c−1 = C(c · Φ),

so the groups MΦ,C(Φ) and Mc·Φ,C(c·Φ) are conjugate. Similarly, if
MΦ ≤ M ≤ MΦ,C(Φ), then M = MΦ,D, where D ≤ C(Φ), and

cMc−1 = Mc·Φ,cDc−1 ≤Mc·Φ,C(c·Φ).

To arrange standard parabolic subgroups for G to be non-conjugate,
we need to choose one group from among {Mc·Φ}c∈C, i.e., a represen-
tative of the set {c · Φ}c∈C.

Choose an ordering on the elements of Π. Then, one has a lexico-
graphic order on the subsets of Π. (To be precise, if Φ1 = {β1, . . . , βk}
and Φ2 = {γ1, . . . , γl} with β1 > · · · > βk and γ1 > · · · > γl, we write
Φ1 ≻ Φ2 if β1 > γ1 or β1 = γ1 and β2 > γ2 , etc. The absence of a
root is lower than a root, so ∅ is minimal.) We define

XC = {Φ ⊂ Π| Φ is maximal among {c · Φ}c∈C}.

In particular, any Φ ⊂ Π is conjugate in G to an element of XC .

Definition 3.1. Let PΦ = MΦUΦ ⊂ G0 be the standard parabolic
subgroup of G0 corresponding to Φ ⊂ Π. We call P = MUΦ, where

MΦ ≤ M ≤ MΦ,C(Φ)

and Φ ∈ XC , a standard parabolic subgroup of G.
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Let P = MU be a standard parabolic subgroup of G. Write P 0 =
P ∩G0 = MΦUΦ and M = MΦ,D. We denote the split component of
MΦ by A. Let a be the real Lie algebra of A, and a

∗ its dual. Let
Π(P 0, A) ⊂ a

∗ denote the set of simple roots corresponding to the
pair (P 0, A); these are the nonzero projections to a

∗ of elements of
Π.

If we identify a
∗ with a subspace of a

∗
0, we get a C(Φ)-invariant

inner product 〈 , 〉: a
∗ × a

∗ → R. As in [S], we set

a
∗
− = {x ∈ a

∗| 〈x, α〉 < 0, ∀α ∈ Π(P 0, A)}.

While elements of a
∗
− are not conjugate in G0, they may be conjugate

in G. Therefore, we choose a subchamber of a
∗
−:

a
∗
−(C) = {x ∈ a

∗
−| x � c · x, ∀c ∈ C(Φ)}.

Here ≺ is the lexicographic order inherited from the order on Π:
Write Π(P 0, A) = {α1, . . . , αj}, where α1 > · · · > αj with respect to
the order on Π. Then x, x′ ∈ a

∗ has x ≺ x′ if 〈x, α1〉 < 〈x′, α1〉 or
〈x, α1〉 = 〈x′, α1〉 and 〈x, α2〉 < 〈x′, α2〉, etc. (If x and x′ are equal
with respect to ≺, then x − x′ is perpendicular to all the roots in
Π(P 0, A).) We note that a

∗
−(C) is convex.

4. Langlands classification

In this section, we give the statement and proof of the Langlands
classification for G (Theorem 4.2). Also of some potential interest is
Proposition 4.5, which essentially deals with the effects of the action
of C on the Langlands data of representations G0.

Let
Irr(G)

denote the set of equivalence classes of all admissible irreducible rep-
resentations of G. If π is an irreducible admissible representation of
G, we write π ∈ Irr(G), identifying π with its equivalence class.

Definition 4.1. A set of Langlands data for G is a triple (P, ν, τ )
with the following properties:

1. P = MU is a standard parabolic subgroup of G.
2. ν ∈ a

∗
−(C).

3. M = MΦ,C(Φ,ν), where C(Φ, ν) = {c ∈ C(Φ)| c · ν = ν}.
4. τ ∈ Irr(M) is tempered.
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The Langlands classification will be a subrepresentation form of [S]
(extended to non-connected groups). In particular, we are taking ν
to be real rather than complex. (This subrepresentation variation of
the Langlands classification for connected p-adic groups is described
in [J2], e.g.)

For ν ∈ a
∗
−(C), let exp ν be the character of MΦ defined in Section

2. For M = MΦ,C(Φ,ν), we extend exp ν to M by setting

exp ν(mc) = exp ν(m),

m ∈MΦ, c ∈ C(Φ, ν). Since

exp ν(m1c1m2c2) = exp ν(m1c1m2c
−1
1 c1c2)

= exp ν(m1)exp(c1 · ν)(m2)

= exp ν(m1c1)exp ν(m2c2),

exp ν is a character of M . Here we use Condition 3. from the defi-
nition of Langlands data. This condition may be seen in Definition
5.6. [M], and it ensures that exp ν is a character of M.

If τ is a representation of M , then exp ν ⊗ τ is the representation
of M defined by

(exp ν ⊗ τ )(mc) = exp ν(m)τ (mc).

Theorem 4.2. (Langlands classification)
There is a bijective correspondence

Lang(G)←→ Irr(G),

where Lang(G) denotes the set of all triples of Langlands data. Fur-
ther, if (P, ν, τ ) ↔ π under this correspondence, then π is the unique
irreducible subrepresentation of iG,M(exp ν ⊗ τ ).

If (P, ν, τ ) ↔ π, then we write π = L(P, ν, τ ).

The basic idea of the proof is as follows: suppose

G0 = G0 ⊂ G1 ⊂ · · · ⊂ Gk = G

has |Gi/Gi−1| prime for i = 1, . . . , k. We argue inductively, assuming
the Langlands classification holds for Gi−1 and showing that it holds
for Gi. Starting the induction, of course, is the Langlands classifica-
tion for connected groups.
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For convenience, let G1 ⊂ G2 be two consecutive groups in the
filtration above (not necessarily the first two). Then G1/G

0 = C1

and G2/G
0 = C2 with C1 ⊂ C2 ⊂ C and |C2/C1| prime.

Lemma 4.3. Let (P1, ν1, τ1) ∈ Lang(G1). Write P 0
1 = PΦ1

. For
i = 1, 2, let

Ci(Φ1) = {c ∈ Ci| c · Φ1 = Φ1},

Ci(Φ1, ν1) = {c ∈ Ci| c · Φ1 = Φ1 and c · ν1 = ν1},

Ci(Φ1, ν1, τ1) = {c ∈ Ci| c · Φ1 = Φ1, c · ν1 = ν1 and c · τ1 = τ1}.

We have either
1. C2(·) = C1(·),

or 2. C2(·)/C1(·) ∼= C2/C1,
where (·) denotes any of these (i.e., (Φ1), (Φ1, ν1) or (Φ1, ν1, τ1)).

Proof. Observe that C1(·) = C2(·) ∩ C1. If C2(·) ⊂ C1, then
C2(·)/C1(·) = 1. Suppose C2(·) 6⊂ C1. Then, C2(·)/C1(·) 6= 1.

Choose representatives c
(1)
2 , . . . , c

(k)
2 for C2(·)/C1(·). We claim that

for i 6= j, c
(i)
2 C1 6= c

(j)
2 C1. If this were the case, we would have

c
(j)
2

−1c
(i)
2 ∈ C1. Since c

(j)
2

−1c
(i)
2 ∈ C2(·), we get c

(j)
2

−1c
(i)
2 ∈ C1∩C2(·) =

C1(·), a contradiction.

Lemma 4.4. Let P1 = M1U1 be a standard parabolic subgroup of G1,
τ1 a representation of M1. For c ∈ C2,

c · iG1,M1
(τ1) ∼= iG1,c·M1

(c · τ1),

where the parabolic induction in the right-hand side is with respect to
c · P1 = cP1c

−1.

Proof. Straightforward. Note that c·P1 is not necessarily standard.

Suppose (P1, ν1, τ1) is a set of Langlands data for G1. Write P 0
1 =

PΦ = P . For d ∈ C2/C1, we shall choose a representative d(Φ, ν1) ∈
dC1. Let

[d(Φ)] = {d′ ∈ dC1| d
′ · Φ is maximal among {dc1 · Φ}c1∈C1

}.

If d′ is an element of [d(Φ)], then [d(Φ)] = d′C1(Φ). Set

Φ′ = d′ · Φ.
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Note that this does not depend on choice of d′ in [d(Φ)]. We have
a
′∗ = d′ · a∗, d′ · Π(P, A) = Π(P ′, A′). Since 〈 , 〉 is C-invariant, it

follows that d′ · a∗
− = a

′∗
−. Now, let

[d(Φ, ν1)] = {d′ ∈ [d(Φ)]| d′ · ν1 � d′′ · ν1, ∀d
′′ ∈ [d(Φ)]}.

If d′′ is an element of [d(Φ, ν1)], then [d(Φ, ν1)] = d′′C1(Φ, ν1). We
choose an element of [d(Φ, ν1)] and denote it by

d(Φ, ν1).

The element d(Φ, ν1) is our representative for d ∈ C2/C1; it is defined
up to C1(Φ, ν1). In particular,

[d(Φ, ν1)] = d(Φ, ν1) · C1(Φ, ν1).

Note that d(Φ, ν1) · ν1 ∈ a
′∗
−(C1).

With the d(Φ, ν1) chosen, we are now ready to prove the following:

Proposition 4.5. Let π1 be an irreducible admissible representation
of G1, (P1, ν1, τ1) Langlands data for G1 such that π1 = L1(P1, ν1, τ1).
If d ∈ C2/C1, then (d(Φ, ν1)·P1, d(Φ, ν1)·ν1, d(Φ, ν1)·τ1) is Langlands
data for G1, and we have

d · π1 = L1(d(Φ, ν1) · P1, d(Φ, ν1) · ν1, d(Φ, ν1) · τ1).

Remark 4.1. The triple (d(Φ, ν1) ·P1, d(Φ, ν1) · ν1, d(Φ, ν1) · τ1) does
not depend on the choice of d(Φ, ν1) because M1 = MΦ,C1(Φ,ν1), ν1 and
τ1 are C1(Φ, ν1)-invariant.

Proof. First, we have to show that (d(Φ, ν1) · P1, d(Φ, ν1) · ν1,
d(Φ, ν1) · τ1) is Langlands data for G1. Our choice of d(Φ, ν1) en-
sures that conditions 1. and 2. in the definition of Langlands data
are satisfied. For 3., write Φ′ = d(Φ, ν1) · Φ and (P ′

1, ν
′
1, τ

′
1) =

d(Φ, ν1) · (P1, ν1, τ1). Now d(Φ, ν1) ·MΦ = MΦ′ . By the abelianness
of C ,

d(Φ, ν1) · C1(Φ, ν1) = C1(Φ, ν1)

and
C1(Φ

′, ν ′
1) =

={c ∈ C1| c · Φ
′ = Φ′, c · ν ′

1 = ν ′
1}

={c ∈ C1| cd(Φ, ν1) ·Φ = d(Φ, ν1) ·Φ, cd(Φ, ν1) · ν1 = d(Φ, ν1) · ν1}

={c ∈ C1| d(Φ, ν1)c ·Φ = d(Φ, ν1) ·Φ, d(Φ, ν1)c · ν1 = d(Φ, ν1) · ν1}

=C1(Φ, ν1).
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Thus, d(Φ, ν1) · C1(Φ, ν1) = C1(Φ, ν1) = C1(Φ
′, ν ′

1). Therefore,

d(Φ, ν1) ·MΦ,C1(Φ,ν1) = MΦ′,C1(Φ′,ν′

1
),

as needed. Finally, that 4. holds follows from Proposition 2.3.

By the preceding lemma,

d · π1 = d(Φ, ν1) · π1

→֒ d(Φ, ν1) · iG1,M1
(exp ν1 ⊗ τ1)

∼= iG1,d(Φ,ν1)·M1
(expd(Φ, ν1) · ν1 ⊗ d(Φ, ν1) · τ1).

Since (d(Φ, ν1) · P1, d(Φ, ν1) · ν1, d(Φ, ν1) · τ1) is Langlands data for
G1, the Langlands classification for G1 tells us that L1(d(Φ, ν1) ·
P1, d(Φ, ν1)·ν1, d(Φ, ν1)·τ1) is the unique irreducible subrepresentation
of

iG1,d(Φ,ν1)·M1
(expd(Φ, ν1) · ν1 ⊗ d(Φ, ν1) · τ1).

Thus,

d · π1 = L1(d(Φ, ν1) · P1, d(Φ, ν1) · ν1, d(Φ, ν1) · τ1),

as needed.

We now proceed to the proof of the Langlands classification. Let

Lang(G1)
L1−→ Irr(G1)

Lang(G1)
T1←− Irr(G1)

be the maps corresponding to the Langlands classification for G1,
which holds by inductive hypothesis (“T ” for “triple”). Our first
step is to construct

T2: Irr(G2)→ Lang(G2).

Let π2 ∈ Irr(G2). Take π1 ∈ Irr(G1) such that π1 appears in
rG1,G2

(π2). Write π1 = L1(P1, ν1, τ1). We define T2(π2) in four cases.
We also show that if T2(π2) = (P2, ν2, τ2), then π2 is the unique
irreducible subrepresentation of iG2,M2

(exp ν2 ⊗ τ2). Write P 0
1 = PΦ.

Case 1: C2(Φ) = C1(Φ).

In this case, it follows from the preceding proposition and Lemma
2.1. that, writing D = C2/C1,

rG1,G2
(π2) =

⊕
d∈D

L1(d(Φ, ν1) · P1, d(Φ, ν1) · ν1, d(Φ, ν1) · τ1).
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(Note that C2(Φ) = C1(Φ) implies the d(Φ, ν1)·P1 are all different, so
the representations in the right-hand side are inequivalent.) Further,
for any d ∈ D,

π2
∼= iG2,G1

(L1(d(Φ, ν1) · P1, d(Φ, ν1) · ν1, d(Φ, ν1) · τ1)).

We claim there is a unique d ∈ D having d(Φ, ν1) · Φ ∈ XC2
. First,

since
C2 · Φ =

⋃
d∈D

d(Φ, ν1)C1 · Φ

and the fact that d(Φ, ν1) · Φ is maximal in dC1 ·Φ (by construction
of d(Φ, ν1)), such a d ∈ D exists. For uniqueness, observe that if
d(Φ, ν1) ·Φ = d′(Φ, ν1) ·Φ, then d(Φ, ν1)

−1d′(Φ, ν1) ∈ C2(Φ) = C1(Φ),
contradicting d 6= d′ in D. Write d2 for this particular element of D.
Set

T2(π2) = (d2(Φ, ν1) · P1, d2(Φ, ν1) · ν1, d2(Φ, ν1) · τ1) = (P2, ν2, τ2).

Of course, we have to check that (P2, ν2, τ2) ∈ Lang(G2).

First, d2 was chosen so that d2(Φ, ν1) ·Φ ∈ XC2
, so condition 1. in

the definition of Langlands data holds. By the preceding proposition,
(P2, ν2, τ2) ∈ Lang(G1). Since C2(Φ) = C1(Φ), condition 2. in the
definition of Langlands data is the same whether we want to view
(P2, ν2, τ2) ∈ Lang(G1) or Lang(G2). Thus 2. holds. For 3., observe
that C2(d2(Φ, ν1) · Φ) = C2(Φ) = C1(Φ). Therefore,

C2(d2(Φ, ν1) · Φ, d2(Φ, ν1) · ν1)

= {c ∈ C2(d2(Φ, ν1) · Φ)| cd2(Φ, ν1) · ν1 = d2(Φ, ν1) · ν1}

= {c ∈ C2(Φ)| d2(Φ, ν1)c · ν1 = d2(Φ, ν1) · ν1}

= {c ∈ C1(Φ)| c · ν1 = ν1}

= C1(Φ, ν1).

Hence,

d2(Φ, ν1) ·MΦ,C1(Φ,ν1) = Md2(Φ,ν1)·Φ,C1(Φ,ν1)

= Md2(Φ,ν1)·Φ,C2(d2(Φ,ν1)·Φ,d2(Φ,ν1)·ν1),

as needed. Thus 3. holds. Finally, that condition 4. holds fol-
lows from an argument like that for Proposition 2.4 (since MΦ 6=
Md(Φ,ν1)·Φ, Proposition 2.4 is not quite enough). Therefore, we have
(P2, ν2, τ2) ∈ Lang(G2).
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We now argue that π2 is the unique irreducible subrepresentation
of iG2,M2

(exp ν2 ⊗ τ2). Suppose π′
2 is an irreducible representation

which appears as a subrepresentation in iG2,M2
(exp ν2 ⊗ τ2). Then,

0 6= HomG2
(π′

2, iG2,M2
(exp ν2 ⊗ τ2))

∼= HomG1
(rG1,G2

(π′
2), iG1,M2

(exp ν2 ⊗ τ2)).

Now, rG1,G2
(π′

2) = π′
1 or

⊕
d · π′

1. In either case, the Langlands
classification for G1 tells that we must have d · π′

1 = L1(P2, ν2, τ2) for
some d. Therefore, π′

2
∼= π2. In particular, only π2 can appear as a

subrepresentation. Further, the Langlands classification for G1 also
implies that

dim HomG1
(rG1,G2

(π2), iG1,M2
(exp ν2 ⊗ τ2)) = 1,

so π2 can appear only once as a subrepresentation. Thus, π2 is the
unique irreducible subrepresentation of iG2,M2

(exp ν2 ⊗ τ2).

Case 2: C2(Φ) 6= C1(Φ) but C2(Φ, ν1) = C1(Φ, ν1).

As in Case 1, we also have

rG1,G2
(π2) =

⊕
d∈D

L1(d(Φ, ν1) · P1, d(Φ, ν1) · ν1, d(Φ, ν1) · τ1)

and

π2
∼= iG2,G1

L1(d(Φ, ν1) · P1, d(Φ, ν1) · ν1, d(Φ, ν1) · τ1),

for any d ∈ D. (Note that C2(Φ, ν1) = C1(Φ, ν1) ensures that the
d(Φ, ν1) · (P1, ν1, τ1) are distinct, so rG1,G2

(π2) decomposes into in-
equivalent representations as indicated.)

Observe that by Lemma 4.3, C2(Φ)/C1(Φ) ∼= C2/C1. An easy
check tells us if d1, . . . , dp are representatives for C2(Φ)/C1(Φ), they
are also representatives for C2/C1. Now,

diC1 · Φ = C1di · Φ = C1 · Φ.

Since Φ is maximal in C1 · Φ (by condition 1. in the definition of
Langlands data), we see that Φ is maximal in diC1 ·Φ. Consequently,
Φ is maximal in d(Φ, ν1)C1 · Φ, so we must have d(Φ, ν1) · Φ = Φ for
any d ∈ D. Therefore, d(Φ, ν1) ·P1 = P1 for any d ∈ D. Now, choose
d2 ∈ D such that d2(Φ, ν1) · ν1 is maximal among {d(Φ, ν1) · ν1}d∈D,
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noting that C2(Φ, ν1) = C1(Φ, ν1) tells us these will be distinct. We
set

T2(π2) = (P1, d2(Φ, ν1) · ν1, d2(Φ, ν1) · τ1) = (P2, ν2, τ2).

We need to check (P2, ν2, τ2) ∈ Lang(G2).

First, from above, we know that Φ is maximal in dC1 ·Φ for all d ∈
D. Therefore, Φ is maximal in C2 · Φ, i.e., Φ ∈ XC2

. Thus condition
1. in the definition of Langlands data is satisfied. The choice of d2

and construction of d2(Φ, ν1) ensures that condition 2. is satisfied.
Condition 3. is just the fact C2(Φ, ν2) = C2(Φ, ν1) = C1(Φ, ν1) (since
P2 = P1). Condition 4. is (again) a consequence of Proposition 2.4.
Thus, (P2, ν2, τ2) ∈ Lang(G2).

The argument that π2 is the unique irreducible subrepresentation
of iG2,M2

(exp ν2 ⊗ τ2) is essentially the same as in Case 1.

Case 3: C2(Φ) 6= C1(Φ), C2(Φ, ν1) 6= C1(Φ, ν1) but C2(Φ, ν1, τ1) =
C1(Φ, ν1, τ1).

Again, we have

rG1,G2
(π2) =

⊕
d∈D

L1(d(Φ, ν1) · P1, d(Φ, ν1) · ν1, d(Φ, ν1) · τ1)

and

π2
∼= iG2,G1

L1(d(Φ, ν1) · P1, d(Φ, ν1) · ν1, d(Φ, ν1) · τ1).

However, T2(π2) will not be just a conjugate of (P1, ν1, τ1) in this
case.

First, we observe that, as in Case 2, C2(Φ) 6= C1(Φ) implies
d(Φ, ν1) ·Φ = Φ for all d ∈ D. Similarly, since C2(Φ, ν1) 6= C1(Φ, ν1),
we may also deduce that d(Φ, ν1) · ν1 = ν1 for all d ∈ D. How-
ever, since C2(Φ, ν1, τ1) = C1(Φ, ν1, τ1), we get that {d(Φ, ν1) · τ1}d∈D

are inequivalent. (Note that this tells us rG1,G2
(π2) decomposes into

inequivalent representations as indicated above.)

Let P2 = PΦ,C2(Φ,ν1) and ν2 = ν1. Since {d(Φ, ν1) · τ1}d∈D are
inequivalent, we get

τ2 = iM2,M1
(τ1)

is irreducible. We take

T2(π2) = (P2, ν2, τ2).
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Again, we must show that we actually have (P2, ν2, τ2) ∈ Lang(G2).

First, as in Case 2, the fact that C2(Φ) 6= C1(Φ) gives Φ ∈ XC2
, so

condition 1. in the definition of Langlands data is satisfied. An argu-
ment very similar to the argument that C2(Φ) 6= C1(Φ) ⇒ Φ ∈ XC2

tells us C2(Φ, ν1) 6= C1(Φ, ν1) ⇒ ν1 ∈ a
∗
−(C2). Therefore, condition

2. is satisfied. Our choice of P2 ensures 3. holds; 4. follows from
the definition of tempered representations we are using. Therefore,
(P2, ν2, τ2) ∈ Lang(G2).

We now need to show that π2 is the unique irreducible subrepre-
sentation of iG2,M2

(exp ν2 ⊗ τ2). Since iM2,M1
(τ1) is irreducible, we

have iG2,M2
(exp ν2 ⊗ τ2) ∼= iG2,M1

(exp ν2 ⊗ τ1). Therefore, if π′
2 is an

irreducible subrepresentation of iG2,M2
(exp ν2 ⊗ τ2), we have

0 6= HomG2
(π′

2, iG2,M2
(exp ν2 ⊗ τ2))

∼= HomG1
(rG1,G2

(π′
2), iG1,M1

(exp ν1 ⊗ τ1)).

Now, either rG1,G2
π′

2 = π′
1 or

⊕
d · π′

1. In either case, the Langlands
classification for G1 tells us we must have d · π′

1 = L1(P1, ν1, τ1) for
some d. Therefore, π′

2
∼= π2, so only π2 can appear as a subrepre-

sentation. Further, the Langlands classification for G1 also tells us
that

dim HomG1
(rG1,G2

(π2), iG1,M1
(exp ν1 ⊗ τ1)) = 1,

so π2 can appear only once as a subrepresentation. Thus, π2 is the
unique irreducible subrepresentation of iG2,M2

(exp ν2⊗τ2), as needed.

Case 4: C2(Φ) 6= C1(Φ), C2(Φ, ν1) 6= C1(Φ, ν1), C2(Φ, ν1, τ1) 6=
C1(Φ, ν1, τ1).

As in Case 2, C2(Φ) 6= C1(Φ) implies d(Φ, ν1) · Φ = Φ for all
d ∈ D. As in Case 3, C2(Φ, ν1) 6= C1(Φ, ν1) implies d(Φ, ν1) · ν1 = ν1

for all d ∈ D. We claim that C2(Φ, ν1, τ1) 6= C1(Φ, ν1, τ1) implies
d(Φ, ν1) · τ1

∼= τ1 for all d ∈ D. Let P2 = PΦ,C2(Φ,ν1). Then

M2/M1
∼= C2(Φ, ν1)/C1(Φ, ν1) ∼= C2(Φ, ν1, τ1)/C1(Φ, ν1, τ1)

(all three ∼= D). Note that since C1(Φ, ν1) acts trivially on Irr(M1),
we get an action of C2(Φ, ν1)/C1(Φ, ν1) on Irr(M1). Further, since
C2(Φ, ν1)/C1(Φ, ν1) ∼= C2(Φ, ν1, τ1)/C1(Φ, ν1, τ1), it is easy to check
that we may choose representatives for C2(Φ, ν1)/C1(Φ, ν1) from
C2(Φ, ν1, τ1). Therefore, we see that the action of C2(Φ, ν1)/C1(Φ, ν1)
on τ1 is trivial. The claim follows.
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Observe that we now know d(Φ, ν1) · (P1, ν1, τ1) = (P1, ν1, τ1) for
all d ∈ D. Thus, from Lemma 2.1 and Proposition 4.5, we get

rG1,G2
(π2) ∼= L1(P1, ν1, τ1) = π1

and

iG2,G1
L1(P1, ν1, τ1) ∼=

⊕
χ∈D̂

χ⊗ π2.

First, let P2 = PΦ,C2(Φ,ν1) and ν2 = ν1. Since d(Φ, ν1) · τ1
∼= τ1 for

all d ∈ D, it follows from Lemma 2.1 that

iM2,M1
(τ1) ∼=

⊕
χ∈D̂

χ⊗ τ2,

for a fixed irreducible τ2 appearing in iM2,M1
(τ1). Observe that

HomG2
(π2, iG2,M1

(exp ν1 ⊗ τ1)) ∼= HomG1
(π1, iG1,M1

(exp ν1 ⊗ τ1))

is one-dimensional by the Langlands classification for G1. On the
other hand, by Frobenius reciprocity,

HomG2
(π2, iG2,M1

(exp ν1 ⊗ τ1))
∼= HomM2

(rM2,G2
(π2), exp ν1 ⊗ iM2,M1

(τ1))

∼= HomM2
(rM2,G2

(π2), exp ν1 ⊗ (
⊕

χ⊗ τ2))

(using induction in stages). Without loss of generality, we may choose
τ2 to be the component of iM2,M1

(τ1) which has

HomM2
(rM2,G2

(π2), exp ν1 ⊗ τ2) 6= 0.

Then, we set

T2(π2) = (P2, ν2, τ2).

Again, we need to check that (P2, ν2, τ2) ∈ Lang(G2).

First, as in Case 3, C2(Φ) 6= C1(Φ), C2(Φ, ν1) 6= C1(Φ, ν1) ensure
that Φ ∈ XC2

and ν2 = ν1 ∈ a
∗
−(C2). Thus, conditions 1. and

2. in the definition of Langlands data hold. Condition 3. follows
immediately from ν2 = ν1 and our choice of P2. Condition 4. follows
from Definition 2.5.

We now need to show that π2 is the unique irreducible subrepre-
sentation of iG2,M2

(exp ν2 ⊗ τ2). Suppose π′
2 ∈ Irr(G). From the
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Langlands classification for G1 and

HomG2
(π′

2, iG2,M1
(exp ν1 ⊗ τ1))

∼= HomG1
(rG1,G2

(π′
2), iG1,M1

(exp ν1 ⊗ τ1)),

we see that π′
2 is not a subrepresentation of iG2,M2

(exp ν2 ⊗ τ2) →֒
iG2,M1

(exp ν1 ⊗ τ1) unless π′
2 = χ⊗ π2. For such a π′

2, we have

HomG2
(π′

2, iG2,M2
(exp ν2 ⊗ τ2))

∼= HomM2
(rM2,G2

(π′
2), exp ν2 ⊗ τ2),

is nonzero only when π′
2
∼= π2. Further, when π′

2
∼= π2 these are one-

dimensional spaces, so π2 appears only once as a subrepresentation.
Thus, π2 is the unique irreducible subrepresentation of iG2,M2

(exp ν2⊗
τ2), as needed.

At this point, we have constructed a map T2: Irr(G2)→ Lang(G2).
Further, we have shown that if T2(π2) = (P2, ν2, τ2), then π2 is the
unique irreducible subrepresentation of iG2,M2

(exp ν2 ⊗ τ2). Note
that this implies T2 is injective. To finish the proof of the theo-
rem, it suffices to prove the following: if (P2, ν2, τ2) ∈ Lang(G2), then
iG2,M2

(exp ν2⊗τ2) has a unique irreducible subrepresentation. We can
then define L2(P2, ν2, τ2) to be that irreducible subrepresentation and
it will follow easily that T2 ◦ L2 = idLang(G2) and L2 ◦ T2 = idIrr(G2).

Let (P2, ν2, τ2) ∈ Lang(G2). Write P1 = P2 ∩ G1. The argument
that iG2,M2

(exp ν2 ⊗ τ2) has a unique irreducible subrepresentation
may be done in three cases:

1. P2 = P1.

2. P2 6= P1 and rM2,M1
(τ2) reducible.

3. P2 6= P1 and rM2,M1
(τ2) irreducible.

We remark that the arguments used below are, in some cases, quite
similar to arguments used earlier.

Case 1: P2 = P1.

In this case, we also have (P2, ν2, τ2) ∈ Lang(G1). Write

(P1, ν1, τ1) = (P2, ν2, τ2)
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when considering it this way. By condition 3. in the definition of
Langlands data and M2 = M1, we see that C2(Φ, ν1) = C1(Φ, ν1). As
in Cases 1. and 2. above (depending on whether C2(Φ) = C1(Φ)),
this tells us that d(Φ, ν1) · (P1, ν1, τ1) 6= (P1, ν1, τ1) for all d ∈ D with
d 6= 1. By Lemma 2.1. and Proposition 4.5, this implies

π2 = iG2,G1
(L1(P1, ν1, τ1))

is irreducible. Now, for π′
2 ∈ Irr(G2),

HomG2
(π′

2, iG2,M2
(exp ν2 ⊗ τ2))

∼= HomG2
(π′

2, iG2,G1
◦ iG1,M1

(exp ν1 ⊗ τ1))

∼= HomG1
(rG1,G2

(π′
2), iG1,M1

(exp ν1 ⊗ τ1))

is one-dimensional if L1(P1, ν1, τ1) →֒ rG1,G2
(π′

2) and zero-dimensional
otherwise (by the Langlands classification and the fact that rG1,G2

(π′
2)

decomposes as a direct sum of inequivalent irreducible subrepresen-
tations (possibly one)). That is, it is one-dimensional for π′

2
∼= π2 and

zero-dimensional otherwise. Thus, iG2,M2
(exp ν2 ⊗ τ2) has a unique

irreducible subrepresentation.

Case 2: P2 6= P1 and rM2,M1
(τ2) reducible.

Write

rM2,M1
(τ2) =

⊕
d∈D

d · τ1,

where τ1 is an irreducible representation of M1. If ν1 = ν2, then
(P1, ν1, τ1) ∈ Lang(G1). We note that P2 6= P1 and condition 3. in
the definition of Langlands data tells us C2(Φ, ν1) 6= C1(Φ, ν1). This
implies C2(Φ) 6= C1(Φ) (the representatives for C2(Φ, ν1)/C1(Φ, ν1))
also serve as representatives for C2(Φ)/C1(Φ)). Therefore,

d(Φ, ν1) · (P1, ν1, τ1) = (P1, ν1, d(Φ, ν1) · τ1) 6= (P1, ν1, τ1)

for d ∈ D with d 6= 1. By Lemma 2.1. and Proposition 4.5, this
implies

π2 = iG2,G1
(L1(P1, ν1, τ1))

is irreducible.
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In this case, τ2 = iM2,M1
(τ1). Therefore, for π′

2 irreducible,

HomG2
(π′

2, iG2,M2
(exp ν2 ⊗ τ2))

∼= HomG2
(π′

2, iG2,M1
(exp ν1 ⊗ τ1))

∼= HomG1
(rG1,G2

(π′
2), iG1,M1

(exp ν1 ⊗ τ1)).

By the Langlands classification for G1 (and the possibilities for
rG1,G2

(π′
2) implied by Lemma 2.1.), this is one-dimensional in the case

when L1(P1, ν1, τ1) →֒ rG1,G2
(π′

2) and zero-dimensional otherwise. In
particular, it is one-dimensional for π′

2
∼= π2 and zero-dimensional

otherwise. Thus, iG2,M2
(exp ν2⊗ τ2) has a unique irreducible subrep-

resentation.

Case 3: P2 6= P1 and rM2,M1
(τ2) irreducible.

Write

rM2,M1
(τ2) = τ1,

with τ1 irreducible. If ν1 = ν2, then (P1, ν1, τ1) ∈ Lang(G1). As
in Case 2, P2 6= P1 implies C2(Φ, ν1) 6= C1(Φ, ν1), and therefore
C2(Φ) 6= C1(Φ). Further, the irreducibility of rM2,M1

(τ2) then implies

d(Φ, ν1) · (P1, ν1, τ1) = (P1, ν1, τ1)

for all d ∈ D. (We note that we may also conclude C2(Φ, ν1, τ1) =
C1(Φ, ν1, τ1).) In particular, by Lemma 2.1. and Proposition 4.5,

iG2,G1
L1(P1, ν1, τ1) =

⊕
χ∈D̂

χ⊗ π2,

where π2 is any fixed component of iG2,G1
L1(P1, ν1, τ1) = iG2,G1

(π1).
Observe that for π′

2 ∈ Irr(G2)

HomG2
(π′

2, iG2,M1
(exp ν1 ⊗ τ1))

∼= HomG1
(rG1,G2

(π′
2), iG1,M1

(exp ν1 ⊗ τ1))

is one-dimensional if rG1,G2
(π′

2) = π1 and zero-dimensional otherwise
(by the Langlands classification for G1). That is, it is one-dimensional
if π′

2 ∈ {χ ⊗ π2}χ∈D̂ and zero-dimensional otherwise. On the other

hand, since iM2,M1
(τ1) ∼=

⊕
χ∈D̂ χ ⊗ τ2, (D ∼= M2/M1

∼= G2/G1), we
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have

HomG2
(π′

2, iG2,M1
(exp ν1 ⊗ τ1))

∼= HomG2
(π′

2, iG2,M2
(exp ν2 ⊗ iM2,M1

(τ1)))

∼= HomG2
(π′

2, iG2,M2
(exp ν2 ⊗ (

⊕
χ∈D̂

χ⊗ τ2)).

Take π′
2 ∈ {χ ⊗ π2}χ∈D̂. By one-dimensionality, there is a unique

τ ′
2 ∈ {χ⊗τ2}χ∈D̂ such that HomG2

(π′
2, iG2,M2

(exp ν2⊗τ ′
2)) is nonzero;

by cardinality considerations, π′
2 ↔ τ ′

2 is bijective. We choose π2 to
be the component of iG2,G1

(π1) corresponding to τ2. This implies
that HomG2

(π′
2, iG2,M2

(exp ν2 ⊗ τ2)) is one-dimensional if π′
2
∼= π2

and zero-dimensional otherwise. Therefore, iG2,M2
(exp ν2 ⊗ τ2) has a

unique irreducible subrepresentation (namely π2).

This finishes the proof of the theorem.

Remark 4.2. The Langlands classification may also be formulated
in the quotient setting. We close by doing this.

First, for P = MU a standard parabolic subgroup of G, let

a
∗
+ = {x ∈ a

∗| 〈x, α〉 > 0, ∀α ∈ Π(P 0, A)},

a
∗
+(C) = {x ∈ a

∗
+| x � c · x, ∀ c ∈ C(Φ)}.

We note that a
∗
+ = −a

∗
− and a

∗
+(C) = −a

∗
−(C). A triple (P, ν, τ )

is a set of Langlands data for the quotient setting of the Langlands
classification if the following hold:

1. P = MU is a standard parabolic subgroup of G
2. ν ∈ a

∗
+(C)

3. M = MΦ,C(Φ,ν)

4. τ ∈ Irr(M) is tempered.

In this case, we have a bijective correspondence

Irr(G) ←→ Langquot(G).

If π ∈ Irr(G) has Langlands quotient data (P, ν, τ ), then π is the
unique irreducible quotient of IndG

P (exp ν ⊗ τ ).
It is not difficult to obtain the quotient version of the Langlands

classification from the subrepresentation version. Let π ∈ Irr(G).
Write π̃ = L(P, ν, τ ) (subrepresentation setting), where π̃ denotes
the contragredient of π. By the contravariance of ,̃ the fact that π̃
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is the unique irreducible subrepresentation of IndG
P (exp ν⊗ τ ) tells us

that ˜̃π ∼= π is the unique irreducible quotient of (IndG
P (exp ν ⊗ τ ))̃ ∼=

IndG
P (exp(−ν)⊗ τ̃). It is easy to check that (P,−ν, τ̃ ) ∈ Langquot(G).

This argument may be reversed to establish the equivalence of the two
formulations.
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