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Summary. A semiparametric model is presented utilizing dependence between a response
and several covariates. We show that this model is optimum when the marginal distributions of
the response and the covariates are known. This model extends the generalized linear model
and the proportional likelihood ratio model when the marginal distributions are unknown. New
interpretations of known models such as the logistic regression model, density ratio model and
selection bias model are obtained in terms of dependence between variables. For estimation of
parameters, a simple algorithm is presented which is guaranteed to converge. It is also the same
regardless of the choice of the distribution for response and covariates; hence, it can fit a very
wide variety of useful models. Asymptotic properties of the estimators of model parameters are
derived.Real data examples are discussed to illustrate our approach and simulation experiments
are performed to compare with existing procedures.
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1. Introduction

Luo and Tsai (2012) described neuropsychological scale data where the response variable is the
score from the trail making test (part A) measuring 334 patients’ processing speed in seconds,
and the covariates are years of education, age and diagnosis. Often these types of data have sev-
eral covariates (Figs 1 and 2 in Section 7 show scatter plots of scores versus years of education
and age), have unknown statistical distributions and known statistical procedures fail to work
properly. Stamey et al. (1989) examined the correlations between the level of prostate-specific
antigen and several clinical measures in 97 men who were about to receive a radical prostatec-
tomy. The goal (Hastie et al., 2009) is to predict the logarithm of prostate-specific antigen level,
lpsa, from a number of measurements including log-cancer-volume, lcavol, log-prostate-weight,
lcp, age and logarithm of capsular penetration, lcp (Figs 5–7 in Section 7 show scatter plots
of lpsa versus lcavol, lweight and lcp respectively). Although there are moderately high correl-
ations between the response and most covariates, a linear regression model does not consider
the non-linearity at the edges of the data. In both examples, our goal is to develop a model
for the response variable by utilizing its dependence on the covariates while maintaining all the
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marginal information about the response and the covariates that is obtained from the sample
in the model.

For a response Y with covariates Zi, 1 � i � d, the correlation coefficient corr.Y , Zi/ = ci

measures any linear relationship between Y and Zi. When |ci| is much smaller than 1, then
the linear relationship between Y and Zi is very weak. Then we may think of the relationship
between Y and Zis as non-linear in nature. In this sense, ci not only measures the strength
of the linear but also the non-linear relationship between Y and Zi with higher or lower ci

referring respectively to more linearity or more non-linearity. Thus ci can be considered as a
global measure of dependence between Y and Zi. For example, if E.Y |Zi/=Z2

i with Zi being
symmetrically distributed around 0, then ci = 0, then the dependence of Y on Zi is entirely
non-linear. Fig. 8(c) in Section 8 considers a similar situation with E.Y |Z/=|Z|.

In this paper, we develop a model for Y based on corr.Y , Zi/ = ci, 1 � i � d. We shall see
that, when the specified cis are high, the model that is obtained is almost linear (e.g. prostate
data), whereas, when the specified cis are low, the model that is obtained is non-linear (e.g.
the trail making data). In any scientific study, the initial choice of covariates from a vast pool
may be difficult. Given a set of covariates, transformations of covariates or increasing the num-
ber of correlation constraints with original or transformed variables might prove useful for a
better fit of the model developed. See Sections 7 and 8 for discussions on transformations of
covariates.

When the marginal distributions of Y and the Zis are known, our procedure has close con-
nections with the maximum entropy (ME) principle, which may be stated as follows:

‘when selecting a model for a given situation it is often appropriate to express the prior information in
terms of constraints. However, one must be careful so that no information other than these specified
constraints is used in model selection. That is, other than the constraints that we have, the uncertainty
associated with the probability distribution to be selected should be kept at its maximum’ (Jaynes,
1957).

The ME principle can be generalized to the concepts of Kullback–Leibler (KL) distance and
I-projection, as defined below (Csiszár, 1975). For two probability measures Q and P , the KL
distance (or, relative entropy) between Q and P is defined as

I.Q|P/=
{∫

ln
(dQ

dP

)
dQ, if Q�P ,

∞, otherwise:
.1:1/

(Q � P means that Q is absolutely continuous with respect to P .) Although I.Q|P/ is not a
metric, it is always non-negative and equals 0 if and only if Q=P . Hence it is often interpreted
as a measure of ‘divergence’ or ‘distance’ between Q and P . For a given P and a specified set of
probability measures C, it is often of interest to find the QÅ ∈C which satisfies

I.QÅ|P/= inf
Q∈C

I.Q|P/ .<∞/: .1:2/

Such a QÅ is called the I-projection of P onto C. Csiszár (1975) has shown that QÅ exists
uniquely if C is convex and variation closed and there is a Q∈C such that I.Q|P/<∞ (when P

is uniform, equation (1.2) becomes the ME principle).
Associations between random variables have been of interest to statisticians and probabilists

over several recent decades (Agresti, 2013). Recently, Reshef et al. (2011) have proposed a
measure of dependence for two-variable relationships, known as the maximal information co-
efficient. Although the maximal information coefficient captures a wide range of associations
both functional and not, it is restricted to only two variables at a time. Szekely et al. (2007,
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2009) have proposed distance correlation measures of dependence between variables. But this
paper proposes models utilizing dependence based on correlations between variables and their
marginal distributions.

In Section 2 first we show that the model proposed is optimum when the marginal distribu-
tions of Y and Z are known. Then we propose a model for Y when the marginal distributions
of Y and the Zis are unknown, and we discuss its properties. In Section 3, we describe the rela-
tionship of the model with other existing models. Also, new interpretations of known models
are obtained. In Section 4, we present an algorithm to estimate the parameters of the model
proposed. This algorithm is guaranteed to converge and is applicable to any distributions of Y

and Zis. Consistency and asymptotic normality of the parameters are addressed in Section 5.
In Section 6, we present results from two simulation experiments, for discrete and continuous
response cases. In Section 7, two real data examples are considered: one from neuropsycholog-
ical test scores, and the other involving prostate cancer trials. Discussion and final comments
are in Section 8. Further details on duality, proofs of theorems and residual plots are in the
supplemental file that is available on line.

The data that are analysed in the paper and the programs that were used to analyse them can
be obtained from

http://wileyonlinelibrary.com/journal/rss-datasets

2. Model proposed and its properties

Let the response variable Y have cumulative distribution function (CDF) P1.y/, and marginal
probability density functions (PDFs) p1.y/. Those for a d-dimensional covariate vector Z =
.Z1, : : : , Zd/ are P2.z/ and p2.z/ respectively. First we assume that the marginal distributions of
Y and Z are known. As we are interested in the dependence between Y and Z, let .Y , Z/ have a
(unknown) joint CDF Q.y, z/. Let the marginal CDFs of Y and Z that are derived from Q.y, z/

be Q1.y/ and Q2.z/ (PDFs q1.y/ and q2.z/) respectively. Now consider a class C of all joint
probability distributions Q.y, z/ of .Y , Z/ where

C={Q : corr.Y , Zi/= ci, 1� i�d, Q1.y/=P1.y/, ∀ y ∈R, Q2.z/=P2.z/, ∀ z ∈Rd}, .2:1/

for a given vector of constants c = .c1, : : : , cd/, −1� ci �1. Using the marginal distributions of
Y and Z, we can equivalently express

C={Q : E.YZ/= c′, Q1.y/=P1.y/, ∀ y ∈R, Q2.z/=P2.z/, ∀ z ∈Rd}, .2:2/

where c′ = .c′
1, : : : , c′

d/, c′
i = ci

√{var.Y/var.Zi/}+ E.Y/E.Zi/, ∀ i. Without loss of generality,
we shall use ci = c′

i.
The independence model P = P1P2 ignores any dependence relationship between Y and Z.

We propose a model QÅ for .Y , Z/ to be that Q in C that is closest to P in the minimum KL
divergence (recall the ME principle). Theorem 1 below shows that the criteria in C lead us to
the solution given by (where T denotes transpose)

qÅ.y, z/= exp{βÅTzy +hÅ
1 .y/+hÅ

2 .z/}p1.y/p2.z/∫
exp{βÅTvu+hÅ

1 .u/+hÅ
2 .v/}p1.u/p2.v/dudv

: .2:3/

Here the (adjustment) functions hÅ
1 .y/ and hÅ

2 .z/ are needed so that the solution maintains the
Y - and Z-marginals as specified in C. Sometimes the exact expressions of hÅ

1 .y/ and hÅ
2 .z/ are

available, as in example 1 below. In other cases they are approximated by using the algorithm
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given. Deriving the conditional distribution from the joint distribution (2.3), a model of Y , for
given Z, is

qÅ.y|z/= exp{βÅTzy +hÅ
1 .y/}p1.y/∫

exp{βÅTzu+h1.u/}p1.u/du

: .2:4/

Since theorem 1 characterizes equation (2.3) as an optimum solution under C, we shall say
that equation (2.4) is the optimum model for Y using Z (meaning, derived from equation (2.3)).
The following theorem proves the optimality of equation (2.4) by using the duality technique
from Bhattacharya and Dykstra (1995, 1997). More details on duality are in the supplemental
file that is available on line.

Theorem 1. Assume that c, p1.y/ and p2.z/ in C are known. Then model (2.4) is the optimum
model of Y for given Z that incorporates the correlation and marginal information in C, in the
sense that the corresponding joint distribution QÅ (in C) is the closest to the independence
model P in the minimum KL distance than any other Q in C.

The following two examples use theorem 1 to prove a characterizing property of the multi-
variate normal distribution in the sense that the closest distribution from the product of (mul-
tivariate) normal distribution marginals onto the set C is also multivariate normal. Example 1
shows exact expressions for hÅ

1 .y/ and hÅ
2 .z/. Comparing these two examples, we can see the

importance of the presence of marginal constraints.

2.1. Example 1
For simplicity, we consider the case d = 2, and one can extend it to any d. Consider the
random vector .Y , Z1, Z2/ such that the marginals are Y ∼ P1 = N.0, 1/, and .Z1, Z2/ ∼ P2 =
N2{0, .1, ρ==ρ, 1/}, − 1 � ρ � 1, for a known value of ρ. Consider the class C1 of probability
distributions Q1 where

C1 ={Q1 : EQ1.Y Z1/=ρ1, EQ1.Y Z2/=ρ2, Y ∼N.0, 1/, .Z1, Z2/∼N {0, .1, ρ==ρ, 1/}},
and −1�ρ1, ρ2 �1 are known. Assume that the values of ρ, ρ1 and ρ2 are such that Σ1 derived
below is positive definite (as the numerical example shows). We look for QÅ

1 in C1 which is
closest to P = P1P2 in the minimum KL divergence (P1 and P2 independent). From equation
(2.3) and theorem 1, the solution is QÅ

1 , where qÅ
1 .y, z/ = dQÅ

1 =dμ (μ is Lebesgue measure), is
given by (z = .z1, z2/ and v = .v1, v2//

qÅ
1 .y, z/= exp{βÅ

11yz1 +βÅ
12yz2 +hÅ

1 .y/+hÅ
2 .z/}p1.y/p2.z/∫

exp{βÅ
11uv1 +βÅ

12uv2 +hÅ
1 .u/+hÅ

2 .v/}p1.u/p2.v/dudv
: .2:5/

Consider the case when .Y , Z1, Z2/∼ N3.0,Σ1/, where Σ1 = .σij/, with σii =1, σ12 =ρ1, σ13 =
ρ2, σ23 = ρ and σij = σji, ∀ i, j. Then from the expression for Σ−1

1 = .σij/, the joint PDF of
.Y , Z1, Z2/ is

q.y, z1, z2/= exp{−1=.2k1/}
.2π/3=2k

1=2
1

{.1−ρ2/y2 + .1−ρ2
2/z2

1 + .1−ρ2
1/z2

2 −2.ρρ2 −ρ1/yz1

−2.ρρ1 −ρ2/yz2 −2.ρ1ρ2 −ρ/z1z2}, .2:6/

where k1 = det.Σ1/=1−ρ2 −ρ2
1 −ρ2

2 +2ρρ1ρ2.
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The distribution N3.0,Σ1/ is in C1. Using the normal PDF expressions for p1.y/ and p2.z/

in equation (2.5) and comparing the resulting exponent with that in equation (2.6), we can see
using algebra that these two exponents would be the same (except for the additive constants) if
we set

hÅ
1 .y/= −ρ2

1 −ρ2
2 +2ρρ1ρ2

2k1
.y2 −1/,

hÅ
2 .z1, z2/= −ρ2 −ρ2

1 +2ρρ1ρ2

2k1.1−ρ2/
.z2

1 −1/+ −ρ2 −ρ2
2 +2ρρ1ρ2

2k1.1−ρ2/
.z2

2 −1/

+ −2ρ+2ρ3 +ρ1ρ2 +ρρ2
1 +ρρ2

2 −3ρ2ρ1ρ2

k1.1−ρ2/
.z1z2 −ρ/

and βÅ
11 = .ρρ2 −ρ1/=k1 and βÅ

12 = .ρρ1 −ρ2/=k1. Also,
∫

hÅ
1 .y/dP1.y/ = ∫

hÅ
2 .z/dP2.z/= 0 is

satisfied (see the proof of theorem 1). Since the solution of equation (1.2) is unique, QÅ
1 =

N3.0,Σ1/[∈ C] must be the solution to our problem. As a numerical example, let ρ= 0:7, ρ1 =
0:3 and ρ2 =0:5; then qÅ

1 has βÅ
11 =−0:132 and βÅ

12 =0:763.

2.2. Example 2
Consider the same setting as in example 1. Removing the marginal information from C1, consider
the class C2 of probability distributions Q2 where

C2 ={Q2 : EQ2.Y Z1/=ρ1, EQ2.Y Z2/=ρ2},
where −1 �ρ1, ρ2 � 1 are known. We look for QÅ

2 in C2 which is closest to P =P1P2 (with the
same P as in example 1) in the minimum KL divergence. Using a similar technique to those in
theorem 1 and its proof, the solution is QÅ

2 , where qÅ
2 .y, z/=dQÅ

2 =dμ (μ is Lebesgue measure)
is given by

qÅ
2 .y, z/= exp.βÅ

21yz1 +βÅ
22yz2/p1.y/p2.z1, z2/∫

exp.βÅ
21uv1 +βÅ

22uv2/p1.u/p2.v1, v2/dudv

= exp.βÅ
21yz1 +βÅ

22yz2 −y2=2− [1={2.1−ρ2/}].z2
1 −2ρz1z2 + z2

2//∫
exp.βÅ

21uv1 +βÅ
22uv2 −u2=2− [1={2.1−ρ2/}].v2

1 −2ρv1v2 +v2
2//dudv

: .2:7/

Write the exponent of the numerator of the rightmost term of equation (2.7) as − 1
2 .y, z1,

z2/Σ−1
2 .y, z1, z2/T, where

Σ−1
2 =

⎛
⎝ 1 −βÅ

21 −βÅ
22

−βÅ
21 1=.1−ρ2/ −ρ=.1−ρ2/

−βÅ
22 −ρ=.1−ρ2/ 1.1−ρ2/

⎞
⎠,

Σ2 = 1
k2

⎛
⎝ 1 βÅ

21 +βÅ
22ρ βÅ

21ρ+βÅ
22

βÅ
21 +βÅ

22ρ 1− .1−ρ2/βÅ
22 ρ+ .1−ρ2/βÅ

21β
Å
22

βÅ
21ρ+βÅ

22 ρ+ .1−ρ2/βÅ
21β

Å
22 1− .1−ρ2/βÅ

21

⎞
⎠

and k2 = 1 − βÅ
21 − βÅ

22 − 2βÅ
21β

Å
22ρ. Setting the .1, 2/th and .1, 3/th elements of Σ2 equal to

ρ1 and ρ2 respectively, we obtain βÅ
21 = k2.ρ1 − ρρ2/=.1 − ρ2/ and βÅ

22 = k2.ρ2 − ρρ1/=.1 − ρ2/.
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Using these values of βÅ
21 and βÅ

22 in the expression for k2 above, we obtain the quadratic k2
2.ρ2

1 +
ρ2

2 −2ρρ1ρ2/+k2 −1=0, which is easily solved for k2.
Since QÅ

2 = N.0,Σ2/ ∈ C2, and the solution of equation (1.2) is unique, QÅ
2 must be the

solution to our problem. Note from Σ2 above that the marginal distributions of Y and Z are
now different from those of the solution in example 1 (Σ1). As a numerical example, using
the same ρ, ρ1 and ρ2 as in example 1, we obtain that qÅ

2 has βÅ
21 = −0:076, βÅ

22 = 0:442 and
k2 =0:777 (discarding the negative value).

Comparing these two examples, C1 ⊂C2 and .βÅ
11, βÅ

12/ 
= .βÅ
21, βÅ

22/. Thus, fixing the marginals
in equation (2.2) makes a difference in the solution of equation (1.2). It may seem difficult to
motivate equation (2.7) with regard to P =P1P2 when the marginal distributions are not specified
in C2; however, as shown in Section 3.2, this is the scenario that produces the proportional
likelihood ratio model.

Analytical solutions for hÅ
1 .y/ and hÅ

2 .z/ can be obtained by using a general algorithm given in
Bhattacharya (2006). For a given sample, the variables are discrete, and we provide an algorithm
to find hÅ

1 .y/ and hÅ
2 .z/ in this paper. In constructing a model, we would benefit from utilizing

as much dependence between Y and Z as possible. So, if corr(Y , Z) is low, then we could
employ some functions, e.g. g1.Y/ and g2.Z/, provided that corr{g1.Y/, g2.Z/} is higher. Similar
approaches have been used by Fokianos and Kaimi (2006) and Guerrero and Johnson (1982).
We discuss this further in Sections 3, 7 and 8.

For an unknown data-generating process, however, the true values of c, p1.y/ and p2.z/ will
not be known. Then we can neither define C as in expression (2.1); nor does the optimality
of equation (2.4) hold as above. However, for large sample size, the marginal distributions of
Y and Z can be estimated by using their empirical distributions along with the population
correlations between Y and Zi by the corresponding sample values. Using these observed values
of constraints from the sample, we define a discrete version of C (namely, K in expression (4.2)) in
the same way as in equation (2.1) in Section 4. Assuming that these sample (moment) constraints
represent the corresponding population (moment) constraints efficiently and consistently, the
resulting model (though not necessarily optimum) is expected to perform well. Model (2.4) now
becomes semiparametric because, along with the parametric component β, there is also the
non-parametric component p1.y/, where no distributional assumption about p1.y/ is made.

We would like to begin with as much information as possible about the response and covariates
that is available but with independence between them, i.e. first find P̂ = P̂1P̂2. This choice of P̂

also gives us all known models as shown in Section 3. If P̂ were to be a uniform distribution
(ME formulation), that would mean throwing away some of the observed information about
the response and covariates.

Next we discuss some properties of equation (2.4) with p1.y/ unknown. The likelihood ratio
is

log
{

qÅ.y2|z/

qÅ.y1|z/

}
=βT z.y2 −y1/+h1.y2/−h1.y1/+ log

{
p1.y2/

p1.y1/

}
, .2:8/

for any z, y1 and y2 such that p1.y1/> 0 and p1.y2/> 0. If z is one dimensional, then

β = log
{

q.y +1|z+1/=q.y|z+1/

q.y +1|z/=q.y|z/

}
,

i.e. exp.β/ measures the likelihood ratio that the response increases by 1 unit when the covariate
increases by 1 unit. Hence equation (2.4) can be called a (generalized) proportional likelihood
ratio model as the likelihood ratio (2.8) depends on z through βTz (we call it ‘generalized’
because of the extra term h1.y2/−h1.y1/, compared with Luo and Tsai (2012)).
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Let θ = βTz. If μ.θ/ = E.Y |Z = z/, then var.Y |Z = z/ = μ′.θ/, which is a property of the
sufficient statistics in exponential families (which model (2.4) is not when p1.y/ is unknown).
Also, it can be easily seen that β is invariant to monotone increasing transformations on Y and
location shifts of Z.

3. Relationship to other models

3.1. Logistic regression model
We show below that model (2.3) reduces to the logistic regression model when Y is binary. To
see this, let Y take values y1 =0 or y2 =1 and Z be fixed at a value zj, where j= .j1, : : : , jd/. Also,
let {rij} be given constants, where Σi,j rij =1. Model (2.4) is given by

P.Y =yi|Z= zj/= rij exp.βTyizj +βk+1,i/

2∑
w=1

rwj exp.βTywzj +βk+1,w/

so defining π.zj/=P.Y =1|Z= zj/ we obtain

π.zj/= r2j exp.βTzj +βk+1,2/

r1j exp.βk+1,1/+ r2j exp.βTzj +βk+1,2/
:

Then,

π.zj/

1−π.zj/
= r2j exp.βk+1,2 −βk+1,1/

r1j
exp.βTzj/

so

logit{π.zj/}=β0 +βTzj,

which is the logistic regression model, where

β0 = ln
(

r2j

r1j

)
+βk+1,2 −βk+1,1 = ln

{
P.Y =1/

P.Y =0/

}
+βk+1,2 −βk+1,1

depends on the (unknown) marginal distribution of Y . By theorem 1, if cis and the marginal
distributions of Y and Z as in expression (2.2) were specified, then the logistic regression model
(is the conditional distribution of Y for given Z = z of a joint distribution in C, which) is the
closest to the independence model subject to the criteria in C.

3.2. Proportional likelihood ratio model
The semiparametric proportional likelihood ratio model that was proposed by Luo and Tsai
(2012) (see also Chan (2013)) is given by

qÅ
PLR.y|z/= exp.βTzy/p1.y/∫

exp.βTzu/p1.u/du

, .3:1/

where the Y -marginal p1.y/ is not specified. Note that equation (3.1) does not carry the term
h1.y/ in the exponent like in equation (2.4). Hence the marginal PDF of Y under model (3.1) is∫

exp.βTzy/p1.y/p2.z/dz∫
exp.βTzu/p1.u/du

,
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which is not necessarily equal to p1.y/. The estimation of parameters of model (3.1) depends
on an algorithm; however, the right condition to guarantee the convergence of the algorithm is
not tractable. Also, the covariates Zi need to be bounded.

In fact, following Section 2 and as in example 2, the I -projection of P onto C′′ = {Q :
corr.Y , Zi/= ci, 1� i�d} is Q′Å, where

dQ′Å

dμ
=q′Å.y, z/= exp.βÅTzy/p1.y/p2.z/∫

exp.βÅTvu/p1.u/p2.v/dudv
,

from which equation (3.1) follows. Thus if p1.y/ and p2.z/ were known, then model (3.1) is op-
timum in the KL sense subject to C′′. Leaving p1.y/ and p2.z/ unknown, model (3.1) is a special
case of model (2.4) setting hÅ

1 .y/=hÅ
2 .Z/=0. Note that there can be many candidate distribu-

tions of Y and Z that can produce the same level of dependence c. It is shown in examples 1 and
2 that absence of the marginals in the constraints may lead to a different model. It is our point
that by setting the restrictions as C instead of C′′ we would capture the marginal information
of Y and Z in the model, which might provide more accurate inference about Y by using Z.

3.3. Generalized linear model
Consider a generalized linear model that specifies the conditional distribution of Y given Z as

fglm.y|z/= exp
{

θy −b.θ/

a.τ /
+ c.y, τ /

}
,

where a, b and c are given functions so that fglm.y|z/ is a PDF. Now let θ=βTz and set c†.y, τ /=
h1.y/+ log{p1.y/}, β† =β=a.τ / and

b†.θ/=a.τ / ln
[∫

exp{βTzu+h1.u/}p1.u/du

]
:

Then

f
†
glm.y|z/= exp

{
β†Tzy − b†.θ/

a.τ /
+ c†.y, τ /

}

is of the form (2.4). Thus, f
†
glm.y|z/ extends the generalized linear model by allowing the part

p1.y/ in c†.y, τ / to be unspecified. Since p1.y/ is unspecified, the standard methods of statistical
inference for exponential families do not apply.

3.4. Density ratio models
In the presence of case–control data, the two-sample density ratio model (Qin, 1998) is f.z|y =
1/ = exp{α+βTh.z/}f.z|y = 0/, for some functions h. Using the Bayes formula, we can write
this as

qÅ.y|z/= exp{βTh.z/y}p1.y/∫
exp{βTh.z/u}p1.u/du

:

Thus using theorem 1 when the distributions of Y and Z are known, we can characterize it as
the optimum in the sense that it is the conditional distribution derived from a joint distribution
in the set C={Q : corr{Y , h.Z/}=c} which is closest (KL) to the independence model P . When
the distributions of Y and Z are unknown, it is a special case of model (2.4) with no marginal
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information preserved. Kay and Little (1987) and Guerrero and Johnson (1982) have considered
transformations of the explanatory variables in logistic regression models for binary data.

Also, the m-sample density ratio model of Fokianos and Kaimi (2006) can be characterized
as the best in the sense that it is the conditional distribution derived from a joint distribution in
the set C={Q : corr{ki.Y/, hj.Z/}=cij, ∀ i, j} which is closest (KL) to the independence model,
assuming that the distributions of Y and Z are known. When they are unknown, the m-sample
density ratio model is a special case of model (2.4) with no marginal information preserved.

3.5. Dependence measures
Joe (1989) and Good (1976) suggested the use of δX1,:::,Xm =I.fX1,:::, Xm |Πm

i=1fXj / as a measure of
multivariate dependence for random vectors X1, : : : , Xm. Joe (1989) showed that, for multivariate
normal distributions with m=2, δX1,X2 is equivalent to |ρ|, where ρ is the correlation coefficient.
Thus, in general, δX1,:::,Xm can be useful as a measure of functional dependence between random
vectors X1, : : : , Xm. In this paper we identify the joint distribution fY ,Z1,:::,Zd

that is closest to
the independence model fY fZ1,:::,Zd

by minimizing I.fY ,Z1,:::,Zd
|fY fZ1,:::,Zd

/ under dependence
and marginality restrictions.

Interpretations similar to those in Sections 3.1–3.4 can also be obtained for other models such
as the Gilbert–Lele–Vardi biased sampling model (Gilbert et al., 1999) and the semiparametric
single-index model (Ichimura, 1993). In this context, note that Rathouz and Gao (2009) and
Huang and Rathouz (2012) modelled the mean directly, where the parameter β is essentially a
contrast in the mean response.

4. Estimation

Suppose that a random sample .Yi, Zi/, i= 1, : : : , n, is available from Q, the joint distribution
of .Y , Z/. Let y1, : : : , yk be the distinct observed values of Y , where yi occurs ni times, 1� i�k,
Σk

i=1 ni =n. Similarly, for Z= .Z1, : : : , Zd/, let {.zs1, : : : , zsks /} be the distinct observed values of
Zs, s = 1, : : : , d. The index j = .j1, : : : , jd/ runs lexicographically from .1, : : : , 1/ to .k1, : : : , kd/.
Also, let .z1j1 , : : : , zdjd

/ occur mj times and, jointly, .yi, z1j1 , : : : , zdjd
/ occur nij times, 1� i� k,

1� jt �kt , 1� t �d, Σj mj =Σi,j nij =n.
For discrete Y and Z, we write Q as q = .qij/ and P as p = .pij/. The observed CDFs are

P̂ = .p̂ij/ and Q̂= .q̂ij/. Here qij =P.Y =yi, Z=zj/=q.yi, zj/. Then the observed joint probability
mass function is q̂ij = P.Y = yi, Z1 = z1j1 , : : : , Zd = zdjd

/ = nij=n, which is used to calculate the
observed value of cs =Σij yizsjsnij=n, s= 1, : : : , d, and the marginal distributions of Y and Z as
Σj qij =ni=n, i=1, : : : , k, Σi qij =mj=n, j= .j1: : : jd/= .1, : : : , 1/, : : : , .k1: : : kd/ respectively.

When the CDFs P and Q in equation (1.2) are replaced by the corresponding empirical CDFs
P̂ = .p̂ij/ and Q̂= .q̂ij/ respectively, the problem reduces to the discrete case and can be expressed
as

inf
Q̂∈K

I.Q̂|P̂/= inf
.q̂ij/∈K

∑
ij

q̂ij ln
(

q̂ij

p̂ij

)
, .4:1/

where the constraints in C in expression (2.2) are replaced by their discrete versions in K in
equation (4.1), which is defined as

K=
{

q = .qij/ :
∑
ij

yizsjsqij = cs, s=1, : : : , d,
∑

j
qij = ni

n
, i=1, : : : , k,

∑
i

qij =
mj

n
,

j= .j1: : : jd/= .1, : : : , 1/, : : : , .k1: : : kd/
}

: .4:2/
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For easier exposition, we number k1: : : kd of j-values using t = 1, : : : , k1: : : kd (as in expression
(4.3) below), so t = j for some j, by slight abuse of notation. In equation (4.1), P̂ = .p̂ij/ is the
sample estimate of P =P1P2, so p̂ij = .ni=n/mj=n, and the estimate to be found is Q̂= .q̂ij/.

Although P̂ satisfies the row and column constraints, it may not satisfy constraints Σij yizsjsqij
= cs. For solving problems such as equation (4.1) for multiway contingency tables, Bhatta-
charya and Dykstra (1997) have shown that a Fenchel duality theorem can be used to identify
a dual optimization problem, which might be easier to solve. When the constraint region is an
intersection of convex cones, they proposed an algorithm which is guaranteed to converge. To
adopt this strategy in our case, for a given n, consider problem (4.1) as the primal problem.
For simplicity of notation, we suppress the dependence on n (for sets and dual solutions hij)
up to expression (4.10) below.

First we express equation (4.2) as an intersection of convex sets as follows:

K= .∩d
s=1Ks/∩ .∩k

r=1Mr/∩ .∩k1:::kd

t=1 Nt/,

where

Ks =
{

q = .qij/ :
∑
ij

.yizsjs − cs/qij =0
}

, 1� s�d,

Mr =
{

q = .qij/ :
∑
ij

.Ir
ij −nr=n/qij =0

}
, r =1, : : : , k,

Nt =
{

q = .qij/ :
∑
ij

.Jt
ij −mt=n/qij =0

}
, t =1, : : : , k1: : : kd ,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.4:3/

where Ir
ij = 1 if r = i, and Ir

ij = 0 otherwise, Jt
ij = 1 if t = j, and Jt

ij = 0 otherwise. These will be
referred to as K-constraints, M-constraints and N-constraints respectively. The dual cone KÅ

of K is given by (Rockafellar, 1970)

KÅ = .⊕d
s=1KÅ

s /⊕ .⊕k
r=1MÅ

r /⊕ .⊕k1:::kd

t=1 NÅ
t /, .4:4/

where ‘⊕’ indicates that the direct sum of vectors KÅ
s , MÅ

r and NÅ
t are the dual cones of

Ks, Mr and Nt respectively, each consisting of vectors of length kk1: : : kd :

KÅ
s ={

h1s = .h1sij/= .γ1s.yizsjs − cs//, γ1s ∈R, ∀ i, j
}
,

MÅ
r ={

h2r = .h2rij/= .γ2r.I
r
ij −nr=n//, γ2r ∈R, ∀ i, j

}
,

NÅ
t ={

h3t = .h3tij/= .γ3t.J
t
ij −mt=n//, γ3t ∈R, ∀ i, j

}
:

Then h = .hij/∈ KÅ is a vector of length kk1: : : kd , where each of its elements is a sum of three
components, and can be written as (here we suppress n and v as hij =hnvij, h1sij =hnv1sij, etc.)

hij =
d∑

s=1
h1sij +

k∑
r=1

h2rij +
k1:::kd∑
t=1

h3tij, .4:5/

and the dual problem to problem (4.1) is given by
inf

h∈KÅ

∑
ij

p̂ij exp.hij/: .4:6/

For fixed n, problem (4.1) is solved by iteratively finding the I -projections onto the K-, M-
and N-constraints. Each cycle has d + k + k1: : : kd steps, which are the same as the number
of constraints. First for the K-constraints, for 1 � s � d, if, at the vth cycle, the .s − 1/th step
(referred to as the .v, s − 1/th step), the solution is q̂.n, v, s − 1/ = .q̂ij.n, v, s − 1//, then, at the
.v, s/th step, we solve for (q = q̂.n, v, s/) in

inf
q∈Ks

I{q|q̂.n, v, s−1/}: .4:7/
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The dual objective function at the .v, s/th step is obtained from the convex conjugate (see the
on-line supplement, theorem S1) of the function in expression (4.7). The corresponding dual
problem solves

inf
h1sij∈KÅ

s

∑
ij

q̂ij.n, v, s−1/exp.hij/= inf
γ1s∈R

∑
ij

q̂ij.n, v, s−1/exp.hij/: .4:8/

Note that the dual problem (4.8) amounts to solving for the scalar γ1s only, which is considerably
easier than solving for q in expression (4.7). The solution to the right-hand side of equation (4.8),
say, at γ1s =γ1nvs is obtained by differentiating it with respect to γ1s and setting it equal to 0,
i.e. ∑

ij
q̂ij.n, v, s−1/.yizsjs − cs/exp.hij/=0, .4:9/

which can be solved easily by the Newton-Raphson method. Then, using theorem S1, we obtain
the solution to expression (4.7) as

q̂ij.n, v, s/= q̂ij.n, v, s−1/exp.h1sij/∑
ab

q̂ab.n, v, s−1/exp.hab/
, .4:10/

where b = .b1, : : : , bd/.
Next, for the M-constraints, we must match the y-marginals of the current table to the ob-

served values nr=n. If, at the .v, d + r − 1/th step, the solution is q̂.n, v, d + r − 1/, then the
exact dual solution at the .v, d + r/th step is γ2nvr = log[nr={nq̂r−1,+.n, v, d + r − 1/}], where
q̂r−1,+.n, v, d + r − 1/ =Σj q̂r−1,j.n, v, d + r − 1/. This amounts to rescaling the Y -marginals of
the current table as in step 3 of the algorithm (see below).

Finally, considering the N-constraints, we must match the z-marginals of the current ta-
ble to the observed values mj=n; the exact dual solution at the .v, d + k + t/th step is γ3nvt =
log[mj={nq̂+,t−1.n, v, d + k + t − 1/}], (recall that t = j for some j) where q̂+,t−1.n, v, d + k +
t − 1/ =Σi q̂i,t−1.n, v, d + k + t − 1/. This amounts to rescaling the Z-marginals of the current
table as in step 4 of the algorithm (see below).

Now we shall write hij as hnvij to denote the dual solutions when the sample size is n and
the algorithm has run for v cycles. Similar updates will apply to the subscripts of β and γ.
Incorporating the above steps repeatedly over v complete cycles, and letting β1nvs =Σv

e=1γ1nes,
β2nvr =Σv

e=1γ2ner and β3nvt =Σv
e=1γ3net , we obtain

q̂ij.n, v, d +k +k1: : : kd/= qij exp.hnvij/∑
ab

qab exp.hnvab/
, .4:11/

where qij = q̂ij.n, 0, 0/= .ni=n/mj=n= p̂ij, hnv = .hnvij/ and

hnvij =
d∑

s=1
β1nvs.yizsjs − cs/+

k∑
r=1

β2nvr

(
Ir
ij −

nr

n

)
+

k1:::kd∑
t=1

β3nvt

(
Jt

ij −
mt

n

)
: .4:12/

Thus we propose the following algorithm for solving problem (4.1).

4.1. Algorithm

Step 1: calculate the constraint values c1, : : : , cd and marginal totals ni=n and mj=n from the
observed table of .Y , Z/ values. Initialize as γn00 = 0 and qij = q̂ij.n, 0, 0/= .ni=n/mj=n= p̂ij.
Let v=1.
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Step 2: begin with u = 1. At the vth cycle, uth step, let γ1nvu =γÅ solve equation (4.9). Use
equation (4.10) to form q̂ij.n, v, u/. Do for u=1, : : : , d.
Step 3: replace q̂ij.n, v, u/ by q̂ij.n, v, u/ni={nq̂i+.n, v, u/}, where q̂i+.n, v, u/ =Σj q̂ij.n, v, u/,
1� i�k, d +1�u�d +k.
Step 4: replace q̂ij.n, v, u/ by q̂ij.n, v, u/mj={nq̂+j.n, v, u/}, where q̂+j.n, v, u/=Σi q̂ij.n, v, u/,
∀ j, d +k +1�u�d +k +k1: : : kd .
Step 5: Let q̂ij.n, v, d + k + k1: : : kd/ = q̂nv

ij . Stop if max{|Σij yizsjs q̂nv
ij − cs|, ∀ s, |q̂nv

i+ − ni=n|,
∀i, |q̂nv

+j −mj=n|, ∀ j}< ε, for some prespecified ε> 0; otherwise, replace v by v+1, and go to
step 2.

We have used Fortran to implement the algorithm. This algorithm is for a fixed sample size
n. Using results from Bhattacharya and Dykstra (1997), it follows that the above algorithm
converges as v → ∞. Convergence is in seconds for all the cases that we considered. Thus
hnv = .hnvij/ converges to hn = .hnij/ as v→∞, where

hnij =
d∑

s=1
β1ns.yizsjs − cs/+

k∑
r=1

β2nr

(
Ir
ij −

nr

n

)
+

k1:::kd∑
t=1

β3nt

(
Jt

ij − mt

n

)
,

=
d∑

s=1
β1ns.yizsjs − cs/+β2ni

(
1− nr

n

)
+β3nj

(
1− mt

n

)

for some β1ns, β2nr and β3nt . Comparing with equation (4.12), it must be that βnv1s →β1ns, βnv2r

→β2nr, βnv3t →β3nt , ∀ s, r, t as v→∞. The asymptotic distribution properties of β1ns are studied
in Section 5.

5. Asymptotic properties

For sample size n, at cycle v, define the vector β1nv = .β1nv1, : : : , β1nvd/T. Next we show that
the sequence of vectors {β1nv, v�1} which is generated by the algorithm converges to the true
parameter β1 =β in model (2.4) as v→∞ and n→∞.

Theorem 2. For a fixed n, the algorithm in Section 4.1 yields the sequence of solutions
{β1nv, v�1, n�1} at the vth cycle. Then β1nv converges to β1n as v→∞, and β1n converges
to the true parameter β1 =β in model (2.4), with probability 1, as n→∞.

Writing β1n =βn, in theorem 3 we consider the asymptotic normality properties of βn. Recall
that dQÅ=dP =qÅ.y, z/ is defined in equation (2.3).

Theorem 3. Assume that QÅ exists and
∫

exp.h/dQÅ <∞ for β in an open neighbourhood
of zero. Assume that

∫ ||yz||2.dQÅ=dP/dQÅ <∞. Then
√

n.βn −β/
D→N.0,Σ−1ΣÅΣ−1/,

where

ΣÅ =

∫
.yz − c/.yz − c/Texp.h/dQÅ

∫
dQÅ

,

Σ=

∫
.yz − c/.yz − c/Texp.h/dP∫

exp.h/dP

:

.5:1/
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To estimate the asymptotic variance of βn, we replace the integrals in expression (5.1) with
the discrete sums, use midpoints of the discretized intervals as the values of yi and zijs, find
inverses of the resulting matrices and use matrix multiplication.

6. Simulation

6.1. Continuous case
Since the algorithm of Section 4.1 works for any distribution of Y and Zis, we would like to com-
pare its performance with some known procedure (e.g. maximum likelihood estimates (MLEs))
in cases when the correct model is known and when it is misspecified. We consider samples of sizes
n = 50, 100, 150 for the random vector .Y , Z1, Z2/ ∼ N3.0,Σ/, where Σ= .2, 0:5, 0:5==0:5, 1:5,
0:5==0:5, 0:5, 2/. True β1- and β2-values are obtained by comparing the PDF of .Y , Z1, Z2/ with
equations (2.3) and (2.4) and computing Σ−1; here, true .β1, β2/= .0:1538, 0:1026/.

We need to categorize the observed values of Y and Z to construct their observed marginal
distributions. These are used to form the constraints in K. To determine the number of classes for
each variable, first the optimal histogram bin width is calculated from Scott (1979), which asymp-
totically minimizes the integrated mean-squared error. He suggested the use of hn =3:49σn−1=3,
where σ is the standard deviation, when the sample is taken from a normal distribution. As the
standard deviations of three variables are chosen to be close (

√
2,

√
1:5,

√
2), we decided to

use the same k for all three variables. We did some experimentation with different k for three
variables, but this did not produce any significantly different results.

Using the values of y, z1 and z2 as the midpoints of those categories and frequency dis-
tributions, the observed marginal distributions of Y and .Z1, Z2/ and the observed values of
E.YZ1/ and E.YZ2/ are found. These values are used to define the constraints in K. Multiplying
the observed marginal distributions of Y and .Z1, Z2/, a three-way contingency table is formed,
which is the starting point of the algorithm. The algorithm stops when all constraints are sat-
isfied subject to a prespecified value. The algorithm converged in all cases. All simulations are
replicated 1000 times.

The results are in Table 1 using k =8. A more detailed Table 1 is in the on-line supplement to
show the effect of the choice of k on the simulation results, where we varied k for n= 50, 100.
For instance, for k = 4, we considered intervals .−∞, − hn/, .hn, 0/, .0, hn/ and .hn, ∞/, and
similarly for other values of even k. The results are mostly invariant for k > 4. The results are
similar if the intervals are not centred near 0, or considering an odd number of intervals (those
results are not presented here).

The estimates that are produced by the algorithm are compared with the MLEs of β1 and β2.
Comparing expression (2.3) with the expression of the normal PDF exponent .− 1

2 Σij xiσ
ijxj/,

we find that the MLEs of β1 and β2 are given by β̂1 =−σ̂12 and β̂2 =−σ̂13, where Σ̂
−1 = .σ̂ij/

is the inverse of the sample covariance matrix.
The misspecified model assumes that Y |Z∼ exp.ZTβ/+N.0, 2/, Z∼N2.0,ΣZ/, where ΣZ =

.1:5, 0:5==0:5, 2/ (the same as the covariance matrix of Z specified). This model is outside model
(2.4) because the mean is exponential in β. But the procedure proposed is not affected as it does
not depend on Σ. See the on-line supplement for additional results from a wrongly specified
covariance matrix.

For each of β1 and β2, we calculate the bias, standard error values and 95% coverage proba-
bility for β1 and β2. Note that the MLE depends on the normal PDF, whereas our procedure
does not. Simulations in Table 1 indicates that the procedure performs favourably with the MLE
when the correct model is used, and better than the MLE when the model is misspecified. The
performance of the procedure improves as the sample size increases.
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Table 1. Comparing the procedure with MLEs under correct and misspecified normal models

Method n bias(β1n) se(β1n) bias(β2n) se(β2n) CP(β1n)† CP(β2n)†

Procedure 50 −0:0065 0.0987 −0:0091 0.0843 945 952
100 −0:0106 0.0644 −0:0167 0.0553 946 947
150 −0:0099 0.0521 −0:0137 0.0456 946 939

MLE (correct) 50 0.0169 0.1116 0.0090 0.0963 939 949
100 0.0097 0.0739 0.0031 0.0611 945 950
150 0.0057 0.0585 0.0023 0.0503 953 948

MLE (misspecified) 50 −0:2908 0.1083 −0:1896 0.0935 951 941
100 −0:2898 0.0703 −0:1879 0.0612 940 945
150 −0:2890 0.0574 −0:1899 0.0504 937 941

†95% coverage probability.

6.2. Discrete case
Suppose that Y takes values 0 and 1, with probabilities 0.4 and 0.6 respectively, and .Z1, Z2/=
.0, 0/, .0, 1/, .1, 0/, .1, 1/ with probabilities 0.3, 0.25, 0.22 and 0.23 respectively. Assuming that
.β1, β2/=.1, 1/, an eight-cell multinomial probability vector is generated, where pi,j1,j2 ∝ri,j1,j2 ×
exp.β1yiz1j1 +β2yiz2j2 +β3i +β4j1j2/, i, j1, j2 = 1, 2, where the β3i- and β4j1j2 -values are such
that pi,j1,j2 satisfies the Y - and .Z1, Z2/ marginal probabilities and ri,j1,j2 are obtained by multi-
plying the marginal probabilities of Y and .Z1, Z2/; finally, the true pi,j1,j2 -values are found by
numerical methods to be 0.1847, 0.0927, 0.0816, 0.0410, 0.1153, 0.1573, 0.1384 and 0.1890. The
constraints E.YZ1/ = c1 and E.YZ2/ = c2 simplify nicely to p221 + p222 = c1 and p212 + p222 =
c2 respectively. We take random samples of size n from the eight-cell multinomial, for n =
50, 100, 150. From the observed table we calculate the marginal distributions of Y and .Z1, Z2/,
and also find the observed values of c1 and c2. In this case, exact dual solutions are available
not only for the marginal constraints but also for the correlation constraints; for any r = .rijk/,
when solving minp:p221+p222=c1I.p|r/, the dual problem is solved by

γ̂1 = ln
{

c1.r111 + r211 + r121 + r112 + r212 + r122/

.1− c1/.r221 + r222/

}
,

and similarly for constraint p212 +p222 = c2 the dual problem is solved by

γ̂2 = ln
{

c2.r111 + r211 + r121 + r112 + r221 + r122/

.1− c2/.r212 + r222/

}
:

As stated in Section 3.1, in the context of this simulation, we essentially have a logistic regres-
sion model. So we compared our procedure with the logistic regression model

P.Y =1/= exp.β0 +β1yz1 +β2yz2/

1+ exp.β0 +β1yz1 +β2yz2/
,

where β0, β1 and β2 are solved by using the Newton–Raphson (NR) method. As seen from
Table 2, the NR numbers are slightly lower than those from the procedure for n=50; however,
it is the other way around for n=100, 150. It is possible that this is due to the simple rescaling
nature of the algorithm that is proposed here; the NR method involves many matrix operations
including inversions, all of which contribute to the rounding errors, for example. The misspecified
model is taken to be a linear model pi,j1,j2 ∝ ri, j1, j2.β1yiz1j1 +β2yiz2j2 +β3i +β4j1j2/. Here the
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Table 2. Comparing the procedure under correct and misspecified multinomial models

n Method bias(β1n) se(β1n) bias(β2n) se(β2n) CP(β1n)† CP(β2n)†

50 Procedure 0.1120 0.7285 0.0732 0.6842 954 950
NR (correct) 0.0820 0.6773 0.0653 0.6554 946 946
Misspecified 3.1789 1.9909 2.4155 1.8946 696 783

100 Procedure 0.0398 0.4483 0.0075 0.4538 953 951
NR (correct) 0.0396 0.4500 0.0219 0.4553 953 950
Misspecified 2.9301 1.2994 2.2793 1.2098 411 551

150 Procedure 0.0354 0.3691 −0:0006 0.3463 951 955
NR (correct) 0.0398 0.3738 0.0154 0.3473 952 957
Misspecified 2.9103 1.0241 2.2066 0.9828 195 391

†95% coverage probability.

probabilities are linear in β, so it is outside model (2.4). Here the procedure performs favourably
with the NR method when the model is correct, and it performs better when the model is
misspecified. See the on-line supplement for additional results when the model is misspecified
with β0 =0 in the logistic regression model.

7. Real data examples

We considered two examples with different correlation levels. Most of the covariates in the first
and second example have respectively relatively low and high correlations with the response. We
fit and compare different models in each case. The first example has two continuous and one
discrete predictors, and it shows that the power transformation of the variables is useful. The
second example has four continuous predictors. In each case, the fitted non-linear model seems
to be a better fit to the data than the multiple linear regression model.

7.1. Trail making data
We consider a data set from Luo and Tsai (2012), which gives the scores of 334 patients on part
A of the trail making test with covariates education, age and diagnosis. The continuous response
variable Y is the test score, with range 0–150 s; if a patient cannot complete the test in 150 s, a
score of 150 is given. The continuous covariates are Z1, years of education (3–21 years) and Z2,
age (53–108 years), and the discrete covariate is Z3, diagnosis (0 or 1). From the data, we find
that corr.Y , Z1/=−0:40 corr.Y , Z2/=0:18 and corr.Y , Z3/=0:21.

To determine k, the number of classes, we find, for each variable Z, the quantities sd, standard
deviation, and hn, optimal bin width (Scott, 1979), and then k is calculated as k =Z.334/ + ε−
.Z.1/ − ε/=hn, where Z.334/ and Z.1/ are the maximum and minimum values of Z respectively
and ε> 0 is a very small number; of course, k is rounded to the nearest integer.

Using these classes, a four-way contingency table of sample proportions is formed from
the observed data. Using this table and the midpoint of each class for each variable are used
to find the observed values of E.YZ1/, E.YZ2/ and E.YZ3/, which define three dependence
constraints. In addition, observed Y -marginal totals produce 12 constraints and observed Z-
marginal totals altogether produce 9 × 13 × 2 = 234 constraints, which make a total of 249
constraints. Multiplying the observed marginal distributions of Y and Z, a four-way contingency
table is formed, which is the starting point of the algorithm. The algorithm stops when all
constraints are satisfied subject to a prespecified value.
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After the algorithm has converged, we find model 1, βÅ
1 =−4:76×10−3, βÅ

2 =1:01×10−3 and
βÅ

3 = 16:45 × 10−3, with sd(βÅ
1 /= 0:51 × 10−3, sd(βÅ

2 /= 0:09 × 10−3 and sd(βÅ
3 /= 2:60 × 10−3.

Thus all three coefficients are statistically significant. Although these values are on a par with
those in Luo and Tsai (2012), model 1 maintains the observed Y and Z marginals. Luo and Tsai
(2012) found the interaction terms to be statistically insignificant, so we did not fit them either.
If we keep Z2 and Z3 at a fixed level, then the likelihood ratio that a patient’s score increases by
10 s will increase by a factor of exp{.0:00476/10}=1:05, should the patient have 1 year less of
education, for all values of z1.

The multiple linear regression line is obtained by using all data values and is given by ŷ =
42:17 − 2:25z1 + 0:43z2 + 6:91z3, with standard deviations of coefficients 12.08, 0.32, 0.14 and
2.41 respectively; thus all are significant. Figs 1 and 2 show the plot of the fitted model with not
transformed variables Z1 and Z2 (E.Y |Zi/ versus Zi for i=1, 2). The regression line is drawn by
fixing the values of other predictors at their means. Also, 95% bootstrap bounds are shown in
each plot. Since our goal is to fit a model based on dependence between Y and the covariates,
it would be of interest if the linear relationship between Y and some function of Zis is any
stronger than that between Y and Zis. Box and Tidwell (1962) suggested appropriate power
transformations of independent covariates that may be useful for our purpose. A plot of Z1
versus Z2 reveals that independence may be assumed (see the on-line supplement). Considering
.Y , Z

α1
1 , Z

α2
2 /, the Box–Tidwell method suggests the estimates α̂1 = −0:52 and α̂2 = 0. Hence,

we consider the transformations Z−0:52
1 and log.Z2/; note that corr.Y , Z−0:52

1 / = −0:45 and
corr{Y , log.Z2/}=0:22 are slightly stronger than those without transformations. So we fit the
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Fig. 1. Fitted trail making A (s) scores versus years of education using not transformed variables; ,
method proposed; , 95% bootstrap bounds; , multiple linear regression
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Fig. 2. Fitted trail making A (s) scores versus age (years) using not transformed variables; , method
proposed; , 95% bootstrap bounds; , multiple linear regression

model for Y by using the transformed covariates .Z−0:52
1 , log.Z2/, Z3/. As before we choose k

for each variable in Table 4 (in the on-line supplement). A new four-way contingency table is
formed by using the transformed variables, and similar steps are followed to those before. Then
we apply the algorithm for a total of 3 + 12 + 13 × 6 × 2 = 171 constraints, and find model 2:
βÅÅ

1 =0:25, βÅÅ
2 =0:07 and βÅÅ

3 =0:02, with sd(βÅÅ
1 /=45:32×10−3, sd(βÅÅ

2 /=3:02×10−3 and
sd(βÅÅ

3 /=3:18×10−3. It is seen that, for model 2, all three coefficients are statistically significant
like in model 1. Next we also fit a model using three interactions between the transformed
variables; however, the interactions turned out to be insignificant. So we stayed with the model
with no interactions like in model 2.

Figs 3 and 4 show the plot of the fitted model with transformed variables Z1 and Z2. The same
regression line is drawn as before. Also, 95% bootstrap bounds are shown in each plot. From
these graphs, it is clear that model 2 attends to the non-linear nature of the data more than model
1 does. From equation (2.8), if we keep Z2 and Z3 at a fixed level in model 2, then the likelihood
ratio that a patient’s score increases by 10 s will increase by a factor of exp[0:25{.z1 −1/−0:5 −
z−0:5

1 }10], should the patient have 1 year less education. Clearly this depends on the value of
z1 (as opposed to model 1), such as it equals 1.38, 1.06 and 1.01 when z1 =3, 8, 21 respectively.
The residual plots that were obtained from the two models are given in Figs 9–12 in the on-line
supplement. From these plots, we observe that most residuals are around zero except a few
which have very large positive values. Those individuals performed much better than expected.

7.2. Prostate cancer data
Stamey et al. (1989) examined the correlations between the level of prostate-specific antigen and
several clinical measures in 97 men who were about to receive a radical prostatectomy. The goal
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Fig. 3. Fitted trail making A (s) scores versus years of education using Box–Tidwell transformed variables;
, method proposed; , 95% bootstrap bounds; , multiple linear regression

0

20

40

60

80

100

120

140

160

50 70 90 110

Tr
ai

l M
ak

in
g 

A
 (s

)

Age (years)

Fig. 4. Fitted trail making A (s) scores versus age (years) using Box–Tidwell transformed variables; ,
method proposed; , 95% bootstrap bounds; , multiple linear regression
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(Hastie et al., 2009) is to predict Y , the logarithm of prostate-specific antigen level, lpsa, using
a number of measurements: Z1, the logarithm of cancer volume, lcavol, Z2, the logarithm of
prostate weight, lweight, Z3, age, and Z4, the logarithm of capsular penetration, lcp; all vari-
ables are continuous. We find that corr.Y , Z1/=0:73, corr.Y , Z2/=0:43, corr.Y , Z3/=0:17 and
corr.Y , Z4/= 0:55. Further, possible interactions between these covariates are also of interest,
such as, we find that corr.Y , Z1ÅZ2/ = 0:74, corr.Y , Z1ÅZ3/ = 0:71 and corr.Y , Z1ÅZ4/ = 0:36:

In this example, power functions of predictors did not significantly increase correlations with Y .
The number of classes for the variables are determined as described earlier (see Table 4 in the

on-line supplement). These classes are used to form a five-way contingency table of sample pro-
portions from the observed data. Next, this table and the midpoints of each class for each variable
are used to find the observed values of E.YZ1/, E.YZ2/, E.YZ3/ and E.YZ4/, which define four
dependence constraints. In addition, the observed Y -marginal totals produce seven constraints
and observed Z-marginal totals altogether produce 6×4 ×7×7=1176 constraints, yielding a
total of 1187 constraints. The same steps are followed as in the previous example to find the
estimates of βis. To decide on an appropriate model, first we fit the model with all four predictors.

(a) Model 1: predictors (lcavol, lweight, age, lcp), β̂ = .0:95, 1:40, −0:02, 0:37/ and sd.β̂/ =
.0:08, 0:17, 0:01, 0:06/. Here ‘age’ is not a significant predictor.

Next we consider the remaining three variables, with their interactions in model 2. The same
process as described above is followed.

(b) Model 2: predictors (lcavol, lweight, lcp, lcavol Å lweight, lcavolÅ lcp, lweight Å lcp),
β̂=.1:02, 1:41, 0:40, −1:48, −0:57, −0:16/ and sd(β̂/=.0:08, 0:18, 0:06, 0:87, 0:55, 0:38/.
Here none of the interaction terms is significant. So we refit the model without any of the
interaction terms with three predictors.
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Fig. 5. Fitted prostate lpsa-values versus lcavol from model 3; , method proposed; , 95%
bootstrap bounds; , multiple linear regression
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Fig. 6. Fitted prostate lpsa-values versus lweight from model 3; , method proposed; , 95%
bootstrap bounds; , multiple linear regression
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Fig. 7. Fitted prostate lpsa-values versus lcp from model 3; , method proposed; , 95% boot-
strap bounds; , multiple linear regression (where lcp is not significant)

(c) Model 3: predictors (lcavol, lweight, lcp), β̂=.0:91, 1:27, 0:38/ and sd.β̂/=.0:07, 0:06, 0:05/.

In Figs 5–7, we have plotted the conditional mean of lpsa given lcavol, lweight and lcp re-
spectively, for model 3, and the 95% bootstrap bounds. The multiple linear regression curve is
given by lpsa =−0:73 + 0:58 lcavol + 0:67 lweight + 0:09 lcp, with standard deviations of the
three predictors 0:09, 0:18 and 0:07 respectively. Hence lcp is not a significant predictor in the
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linear regression model. In each figure, the regression line is drawn by fixing the other predictors
at their mean values.

The residual plots that were obtained from model 3 are given in Figs 13–15 in the on-line
supplement. Since the residual plot versus lcp was deemed unsatisfactory, we have experimented
with values other than k =4 for lcp and decided to go with k =6 for lcp; however, this did not
cause a big change in the values of β̂i, and sd(β̂i), for any i. Thus all the results and figures
that are presented here use k =6 for lcp. Scott (1979) mentioned that a value that is close to his
suggested value would be acceptable for data analysis.

8. Discussion

This paper proposes a model that is characterized by the marginal distributions of the univariate
response, joint distribution of covariates and the correlations between the response and each
covariate. A key feature of the method proposed is that no functional form on the conditional
distribution of the response given the covariates is assumed.

This paper uses the minimum relative entropy principle. An important point to note is that
using this principle we find a Q∈C which is closest to P (in KL distance measure), and safeguards
against using any other information in the process. Thus it may be that there are some very
specific deterministic relationships between Y and Z, but following this principle we might or
might not be able to detect it exactly because that specific relationship is not described in C.
Thus the optimality interpretation of theorem 1 is that the procedure proposed chooses the
solution from a pool (C) of all distributions that shares the same properties of correlation and
marginal distributions as those of the true (Y , Z) (but the exact relationship between Y and Z is
unspecified) and is closest to the joint distribution of independent Y and Z.

To investigate the nature of the fitted models for different possible relationships between Y and
Z further, we consider three cases below. First we consider a straight line relationship between Y

and Z as in Y =3+2Z, where Z∼unif.−1, 1/ and Y ∼unif.3, 5/. Here corr.Y , Z/=1. We define
the set C as

C={Q : E.YZ/= c, Y ∼P1, Z ∼P2},

where P1 = unif.3, 5/ and P2 = unif.−1, 1/, for some constant c. Let P = P1P2, and P1 and P2
be independent. Then P 
∈ C. Although the exact I -projection of P onto C can be found as in
equation (2.3), here we construct an estimate. On the basis of an observed sample of size 100
from the joint distribution of .Y , Z/, we form K as in equation (4.2); using the algorithm a fitted
model is found, and this process is repeated 1000 times. Fig. 8(a) shows the actual model and the
average of fitted models from 1000 simulations. Here the averaged fitted model matches exactly
the actual model.

Next we let Y and Z have a monotone relationship, but not a straight line. Let Y =exp.Z/={1+
exp.Z/}, where Z ∼unif.−5, 5/. Here corr.Y , Z/≈ 0:97, and corr.Y , Z3/≈ 0:8. Here Y ∼fY .y/

=1={2y.1−y/}, 0:007<y<0:993, andfY .y/=0 otherwise. Define C={Q :E.YZ/=c1, E.YZ3/

= c2, Y ∼P1, Z ∼P2}, where P1 corresponds to fY .y/ and P2 =unif.−5, 5/, for some constants
c1 and c2. Let P =P1P2, and P1 and P2 be independent. Then the I -projection of P onto C is
the solution to the problem as in equation (2.3). To estimate, on the basis of an observed sample
of size 100, we form K. A fitted model is found, and this process is repeated 1000 times. Fig. 8(b)
shows the actual model and the average of fitted models from 1000 simulations. Our procedure
cannot locate the specific relationship Y = exp.Z/={1+ exp.Z/} exactly, but it can find a model
which satisfies the properties described in C, and is closest to P . The fitted model would be
closer to the actual model if more correlation constraints are considered, e.g. E.YZ5/=c3, in C.
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Fig. 8. (a) True and fitted models coincide, (b) monotone relationship ( , true model; , fitted
model) and (c) non-monotone relationship ( , true model; , fitted model)

Next suppose that the relationship between Y and Z is not monotone. Let Y = |Z| where
Z ∼unif.−1, 1/. Here corr.Y , Z/=0. Let

C={Q : E.YZ/=0, Y ∼P1, Z ∼P2},

where P1 =unif.0, 1/ and P2 =unif.−1, 1/. Let P =P1P2 and P1 and P2 be independent. Then
P ∈ C, and the I -projection of P onto C is itself, or β = 0 in the expression (2.4) of the joint
distribution of the solution. Thus we cannot locate the true model.

However, note that corr.Y , Z2/≈0:97. Incorporating this information, define

C′ ={Q : E.YZ/=0, E.YZ2/= c, Y ∼P1, Z ∼P2},

for some constant c. Then P 
∈ C′ (C′ ⊂ C). Again, the I -projection of P onto C′ is given by
equation (2.3). To estimate, on the basis of an observed sample of size 100, we form K and
a fitted model is found. This is repeated 1000 times. Fig. 8(c) shows the actual model and the
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average of fitted models from 1000 simulations. Here the averaged fitted model is close to the
actual model.

It may be concluded that correlations alone may not be sufficient to characterize the un-
derlying dependence structure completely. However, the last example shows that including the
additional constraint corr(Y , Z2) in C is helpful in finding a suitable fitted model. Thus we
recommend power transformations of Y and/or Z in constructing C. See also Section 7.

The sensitivity of the choice of transformations can be seen in the trail making data example
where we presented results with and without transformations. We have proposed the use of the
Box and Tidwell (1962) method to find a suitable transformation, which requires independent
covariates. For real data with dependent covariates, orthogonality of covariate vectors may be
obtained by using S−1=2

z Z as covariates instead of Z, where Sz = cov(Z).
The characterization of known models like those described in Section 3 through dependence

using correlations between the response and each covariate appears to be new. This observation
has led to the algorithm that is given in the paper. The practical advantage is that the algorithm
proposed always converges, is simple to use (e.g. no matrix inversion as in the NR method and is
applicable for any response and covariates. Robustness of the method to model misclassification
is demonstrated in simulations for both continuous and discrete cases. The reason for this benefit
is that it does not depend on any likelihood, as opposed to maximum likelihood estimators.
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