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We consider disparity based test statistics to test the equality of a multinomial probability vector to a given
probability vector against an isotonic=antitonic order restriction. The problem of testing the isotonic restriction as
a null hypothesis against unrestricted alternatives is also considered. In both cases the asymptotic distributions of
these test statistics are found to be of the chi-bar squared type similar to the popular likelihood ratio test statistics
for these cases. However our numerical studies demonstrate that depending on the situation, several of the
disparity test statistics are more powerful than the latter.
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1 INTRODUCTION

Test statistics such as Pearson’s chi-square and likelihood ratio are two of the most popular

means of testing equality of a multinomial probability vector (PV) ð p ¼ ð p1; p2; . . . ; pkÞ
with pi � 0;

Pk
i¼1 pi ¼ 1) to a given PV. There are, however, less known test statistics

available, such as Neyman modified chi-square, Freeman-Tukey, and modified log likelihood

ratio for the same testing scenario. In an attempt to unify these statistics, Cressie and Read

(1984) (also see Read and Cressie, 1988) introduced the family of power divergence test

statistics. For two PV’s p and q ¼ ðq1; q2; . . . ; qkÞ, the power divergence family of test

statistics is denoted by f2nI lð p; qÞ; l 2 Rg, where n is the sample size and

Ilð p; qÞ ¼
Xk
i¼1

pi

lðlþ 1Þ

pi

qi

� �l

�1

( )
þ
qi � pi

lþ 1

" #
ð1Þ

with the cases of l ¼ 0;�1 defined as the continuous limits at those values of l. It can be

easily seen that the statistics Neyman modified chi-square, discriminant information,

Freeman-Tukey, log likelihood ratio and the Pearson’s chi-square are special cases of (1)
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with l ¼ �2;�1;�1=2; 0; 1 values respectively. Cressie and Read studied the differences in

behavior of (1) asymptotically and for finite sample sizes for different l values. They also

suggested using the statistic based on l ¼ 2=3 as a competitor to the Pearson’s chi-square

and log likelihood ratio statistics.

For a finite set X ¼ fx1; . . . ; xkg, a binary relation � on X is a simple order if it is reflexive

ðx � x; 8x 2 XÞ, transitive (x � y; y � z imply x � z; 8x; y; z 2 XÞ, antisymmetric

(x � y; y � x imply x ¼ y; 8x; y 2 X ) and every two elements of X are comparable

(8x; y 2 X either x � y or y � x). A binary relation � on X is a partial order if it is reflexive,

transitive and antisymmetric. A quasi order is reflexive and transitive only. Thus every simple

order is a partial order and every partial order is a quasi order.

A real-valued function f on X is isotonic with respect to the quasi-ordering � on X if for

x1; x2 2 X with x1 � x2 imply f ðx1Þ � f ðx2Þ. Instead, if the function f satisfies f ðx1Þ � f ðx2Þ,

then f is said to be antitonic on X . For example, f is isotonic on X with respect to the simple

order (nondecreasing) x1 � x2 � � � � � xk if f ðx1Þ � f ðx2Þ � � � � � f ðxkÞ. Consider the partial

order restriction � on X defined by x1 � xi; 8i ¼ 2; . . . ; k, known as simple tree. A function

f is isotonic on X with respect to the simple tree restrictions if f ðx1Þ � f ðxiÞ; 8i ¼ 2; . . . ; k.

Suppose g is a given function on X and w is a given positive function on X . A function g�

on X is an isotonic regression of g with weights w if and only if g� is isotonic and g�

minimizes
P

x2X ½gðxÞ � f ðxÞ�2wðxÞ in the class of all isotonic functions f on X .

In this paper we assume that a random sample is available from a multinomial distribution

with PV p ¼ ðp1; p2; . . . ; pkÞ and consider the hypotheses H0: p ¼ p0 for a specified

p0 ¼ ðp01; p02; . . . ; p0kÞ;H1: p is isotonic and H2: p is unrestricted. Statistical inference

under isotonic cone restrictions and related topics are discussed in Robertson, Wright and

Dykstra (1988). Assuming p0 is isotonic, we consider testing H0 vs. H1 � H0 and also

H1 vs. H2 � H1 using disparity based test statistics, and study the asymptotic distributions

of the test statistics when the null hypotheses are true. Robertson (1978) considered the

likelihood ratio tests for the same hypotheses.

Dykstra and Lee (1991) found a general solution to minimizing (1) subject to q belonging

to an isotonic cone and p being the vector of observed relative frequencies of the multino-

mial. The solution, based on l, is expressed in terms of convex projections onto the isotonic

cone. Bhattacharya (1997) considered a more general form of the isotonic cone restrictions,

obtained the estimates and performed hypothesis tests under these restrictions. In this paper,

based on the disparity approach of Lindsay (1994), we consider general classes of test

statistics such as those based on the power divergence, blended weight Hellinger distance,

and blended weight chi-square families, all of which are subclasses of disparity tests. Basu

and Sarkar (1994) considered testing H0 vs. H2 � H0 using such disparity test statistics.

Although in existing order-restricted testing literature the likelihood ratio test is the most

common choice as a test statistic, many of the other disparity test statistics used in this

paper will be shown to have better power under certain alternatives. Cressie and Read

(1984), Read and Cressie (1988), and Basu and Sarkar (1994) demonstrate similar cases

when the alternative is unrestricted.

In Section 2, we describe the test statistics used in this paper. In Section 3, we obtain the

asymptotic distributions of the test statistics for the two testing situations considered. In

Section 4, we present several numerical investigations, and show that with appropriately

defined simple tree order restrictions as an alternative, the test statistics developed here pro-

duce higher power at the ‘dip’ and ‘bump’ alternatives compared to the statistics developed

for unrestricted alternatives by Cressie and Read (1984), Read and Cressie (1988) and Basu

and Sarkar (1994). Since under the isotonic restrictions, theoretical asymptotic analysis of

the moments of the test statistics appear to be intractable, we compare the moments of the

statistics through simulations for the simple order and the simple tree order to examine
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their convergence to the asymptotic limit. Such moment comparisons under the order-

restrictions does not exist in the current literature.

2 DISPARITY TEST STATISTICS

Suppose n observations are available from a multinomial distribution with PV p; and let

x ¼ ðx1; . . . ; xkÞ denote the vector of observed frequencies for the k categories. Let G be a

strictly convex thrice differentiable function on ½�1;1Þ with Gð0Þ ¼ 0, Gð1Þð0Þ ¼ 0 and

Gð2Þð0Þ ¼ 1, where GðiÞ represents the ith derivative of G. For the rest of this paper we

will assume that Gð3Þ is bounded and continuous at 0.

A disparity between two PVs p and q generated by G is defined by

rGð p; qÞ ¼
Xk
i¼1

G
pi

qi
� 1

� �
qi: ð2Þ

Let p ¼ ð p1; p2; . . . ; pkÞ where each pi ¼ xi=n for 1 � i � k. The disparity test statistic for

testing H0 against H1 � H0 generated by G is given by 2nrGð p
�; p0Þ, where

p� ¼ ð p�1; p
�
2; . . . ; p

�
k Þ is the isotonic regression of p with equal weights (Robertson et al.,

1988) under H1. Appropriate algorithms are available to compute the isotonic regression

estimates for well known restrictions; for example, when H1 is the simple order, the pool adja-

cent violators algorithm ( page 10 of Robertson et al., 1988) may be used, and when H1

denotes the simple tree order, the algorithm given on page 19 of Robertson et al. (1988)

may be used. These algorithms are used in Section 4 for computing appropriate estimates.

Letting di ¼ ðp�1
0i p

�
i � 1Þ, the Pearson chi-square statistic is generated by GðdÞ ¼ 2�1d2.

The log likelihood ratio chi-square and the power divergence family are generated by

GðdÞ ¼ ðdþ 1Þ logðdþ 1Þ � d and GlðdÞ ¼
ðdþ 1Þðlþ1Þ

� ðdþ 1Þ

lðlþ 1Þ
�

d
lþ 1

;

respectively. The (twice) squared Hellinger distance (the Freeman-Tukey divergence)

corresponds to GðdÞ ¼ 2½ðdþ 1Þ1=2
� 1�. Lindsay (1994) introduced the blended weight

Hellinger and the blended weight chi-square distance families. Here we modify those to

the restricted alternative case. The blended weight Hellinger distance family

fBWHDa; 0 � a � 1g defined by

BWHDað p
�; p0Þ ¼ 2�1

Xk
i¼1

p�i � p0i

að p�i Þ
1=2

þ ð1 � aÞðp0iÞ
1=2

( )2

ð3Þ

corresponds to

GaðdÞ ¼ 2�1 d

½aðdþ 1Þ1=2
þ ð1 � aÞ�

� �2

:

Note that the (twice) squared Hellinger distance is a member of fBWHDag with a ¼ 1=2.

Another family of disparities is the blended weight chi-square fBWCSa; 0 � a � 1g obtained

by taking a weighted average of the denominators of the Pearson’s and Neyman’s chi-squares.

Its form is

BWCSað p
�; p0Þ ¼ 2�1

Xk
i¼1

ð p�i � p0iÞ
2

ap�i þ ð1 � aÞp0i

ð4Þ

DISPARITY TESTING 3



and for this family of disparity test statistics

GaðdÞ ¼
2�1d2

ðadþ 1Þ
:

In the unrestricted case, Lindsay (1994) used the families (3) and (4) for estimation purposes

and Basu and Sarkar (1994) used those for goodness-of-fit tests.

Here the disparities rG are presented in a standardized form so that the corresponding Gð�Þ

functions have the appropriate properties without changing the disparity statistics themselves.

Notice that we have represented the Il measure in a slightly different but equivalent way

compared to Cressie and Read (1984). Our standardizations guarantee that Gð1Þð0Þ ¼ 0

and Gð2Þð0Þ ¼ 1, and thus the leading term of any disparity rGð p; pÞ equals 2�1
Pk

i¼1 d
2
i pi,

where di ¼ p�1
i pi � 1, when expanded in a Taylor series in di around 0. As a result, the

leading term of any disparity test statistic equals the Pearson’s chi-square statistic. As we

will see, this helps to establish the asymptotic distribution of the disparity test statistics in

the next section.

3 HYPOTHESIS TESTS

When testing the hypothesis H0 against the alternative H1 � H0, the test statistic to be used is

2nrGð p
�; p0Þ ¼ 2n

Pk
i¼1 Gð p

�
i =p0i � 1Þp0i. Using a Taylor series expansion (as a function of

p�i around p0i), it follows that

rGð p
�; p0Þ ¼

Xk
i¼1

G
p�i
p0i

� 1

� �
p0i

¼
Xk
i¼1

Gð0Þp0i þ
Xk
i¼1

ð p�i � p0iÞG
ð1Þð0Þ þ

Xk
i¼1

2�1ð p�i � p0iÞ
2Gð2Þð0Þp�1

0i

þ
Xk
i¼1

6�1ð p�i � p0iÞ
3Gð3Þðp�1

0i xi � 1Þp2
0i

¼ S1 þ S2 þ S3 þ S4

say, where p�i � xi � p0i. Since Gð0Þ ¼ 0 and as both p�i and p0i sum to 1 over i, the first two

terms S1 and S2 are equal to 0. Also

6nS4 ¼
Xk
i¼1

nð p�i � p0iÞ
3
½Gð3Þðp�1

0i xi � 1Þp�2
0i �

�
Xk
i¼1

nð p�i � p0iÞ
2

( )
sup
i

j p�i � p0ij

� �
sup
i

p�2
0i

� �
sup
i

Gð3Þðp�1
0i xi � 1Þ

� �
;

where fsupi p
�2
0i g is bounded, supi j p

�
i � p0ij ¼ opð1Þ (since p is consistent for p0, and p�, sup

are continuous functions of p) and
Pk

i¼1 nð p
�
i � p0iÞ

2
¼ Opð1Þ (since it is a continuous

function of
Pk

i¼1 nð pi � p0iÞ
2 which is bounded) under H0. Since ðxi � p0iÞ ¼ opð1Þ for

every i, it follows that Gð3Þðp�1
0i xi � 1Þ ¼ Opð1Þ by the assumptions on Gð3Þ. Therefore,

6nS4 ¼ opð1Þ. Since Gð2Þð0Þ ¼ 1 the result follows by noting that

2nS3 ¼ n
Xk
i¼1

p�1
0i ð p

�
i � p0iÞ

2
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is the Pearson chi-square statistic whose asymptotic chi-bar square distribution under the

simple null hypothesis is well known (Robertson et al., 1988).

When testing H1 vs. H2 � H1, the test statistic is given by

2nrGð p; p
�Þ ¼ 2n

Xk
i¼1

G
pi

p�i
� 1

� �
p�i :

In this case, it may be shown that H0: p0i ¼ 1=k, 8i is least favorable within H1 (Robertson,

1978). By a Taylor series expansion similar to above, its asymptotic distribution may be

shown to be the same as that of n
Pk

i¼1ð pi � p�i Þ
2=p�i whose asymptotic chi-bar square

distribution is also well known (Robertson et al., 1988).

Consider the quasi-order restriction, �p, induced by p and � on f1; 2; . . . ; kg which

requires that i �p j only when i � j and pi ¼ pj. Let Ip be the set of functions on

f1; 2; . . . ; kg isotonic with respect to �p. Let Z ¼ ðZ1; . . . ; ZkÞ where Z1; . . . ; Zk are inde-

pendent standard normal variables, and for i ¼ 1; . . . ; k, let Ppði; kÞ denote the probability

that PðZ j IpÞ, the equal weights least square projection of Z onto Ip, takes on exactly i

distinct values. This probability is well known as the equal weight level probabilities for

the given isotonic order. For p ¼ ð1=k; . . . ; 1=kÞ, this probability is denoted by Pði; kÞ.
The following theorem is obtained from above discussions.

THEOREM 1 For a constant c1; when testing H0 against H1 � H0 the asymptotic distribu-

tion of the test statistic 2nrð p�; p0Þ under H0 is given by

lim
n!1

Pð2nrð p�; p0Þ � c1Þ ¼
Xk
i¼1

Pði; kÞPðw2
i�1 � c1Þ

where w2
i is a chi-square random variable with i degrees of freedom with w2

0 � 0.

When testing H1 as a null hypothesis against the alternative H2 � H1, for a constant c2

and p 2 H1,

lim
n!1

Ppð2nrð p; p�Þ � c2Þ ¼
Xk
i¼1

Ppði; kÞPðw2
k�i � c2Þ

where the subscript p denotes that the probability is computed with p as the parameter value.

Moreover, in this case H0: p0i ¼ 1=k, 8i is asymptotically least favorable within H1, that is,

lim
n!1

Ppð2nrð p; p�Þ � c2Þ �
Xk
i¼1

Pði; kÞPðw2
k�i � c2Þ:

Clearly, the same test statistics are used in presence of antitonic order restrictions with

appropriately modified estimates. In the next section we consider the simple order and the

simple tree order for which the level probabilities are available from Robertson et al.

(1988) upto k � 20.

4 NUMERICAL RESULTS

We begin by describing the performance of several disparity tests with some exact computa-

tions. To keep a clear focus we concentrate mostly on the multinomial case with n ¼ 20 and

k ¼ 4 and a test size of 0.05 for these exact computations; however, to demonstrate greater
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applicability of the proposed methods, we also consider a few other combinations of n and k

in the power divergence case. Several values of l are chosen for the power divergence case,

and several choices of a are used for the BWHDa and BWCSa families. For a given value of k,

we consider the symmetric null hypothesis H0: p0i ¼ 1=k for all i against appropriate

alternative hypotheses of simple tree order H1: p1 � pi, 8i ¼ 2; . . . ; k or the antitonic

order H 0
1: p1 � pi, 8i ¼ 2; . . . ; k. Consider the PV p with p1 ¼ ð1 þ gÞ=k,

pi ¼ ðð1 � g=ðk � 1ÞÞ=k, i ¼ 2; . . . ; k indexed by a single parameter g, �1 � g � k � 1,

and notice that negative values of g lead to ‘dip’ alternatives belonging to the situation

described by H1, and positive values of g produce ‘bump’ alternatives in H 0
1. We have com-

puted exact powers for g ¼ 1:5 and �0:9 as in Cressie and Read (1984) and Basu and Sarkar

(1994). For a given disparity r, we first consider three test statistics T1 ¼ 2nrð p; p0Þ,

T2 ¼ 2nrð p�; p0Þ, T3 ¼ 2nrð p��; p0Þ where T1 is the conventional test statistic of Cressie

and Read, and Basu and Sarkar, originally developed to test H0 against H2 � H0, while T2

and T3 are our proposed statistics for isotonic and antitonic tree orders respectively (e.g.

for testing H0 against H1 � H0 and H 0
1 � H0 respectively), and p� and p�� are the isotonic

and antitonic regression of p with equal weights. We have computed exact powers for

g ¼ 1:5 and �0:9 as in Cressie and Read (1984) and Basu and Sarkar (1994). The powers

of the test statistics are presented in Tables I–V. Tables I, IV, V deal with the k ¼ 4,

n ¼ 20 case and present the results for the power divergence, the BWHD and the BWCS

families respectively under this scenario. Tables II and III represent two different combina-

tions of k and n under which the power divergence statistic is also studied; they help

demonstrate the uniformity in the behavior of the test statistics in these scenarios as well

compared to the k ¼ 4, n ¼ 20 case. In general, Tables I–V illustrate the following:

	 For each given disparity, the power values of T2 are higher than those of T1 for all the

disparity tests when g ¼ �0:9 (i.e. for the dip alternative); this is expected, since T2

specifically utilizes the information that the alternative belongs to H1, while T1 simply

states that the null is false.

	 For the bump alternative ðg ¼ 1:5Þ, T3 has higher power than T1 for all the disparity tests,

which is again expected.

	 The increase in power in T2 over T1 for the dip alternative is generally higher compared to

the increase in power in T3 over T1 for the bump alternative. This is because we used an

TABLE I Power of the T1, T2 and the T3 Test Statistics for the Cressie–Read Family for the
n¼ 20, k¼ 4 Case, Obtained via Exact Computations (Rounded to Four Places of Decimals). The
Size of the Test is 0.05.

T1 T2 T3

l g¼ 1.5 g¼�0.9 g¼ 1.5 g¼�0.9 g¼ 1.5 g¼�0.9

�5.00 0.6316 0.7434 0.0000 0.9357 0.6366 0.0022
�2.00 0.6500 0.7434 0.0000 0.9326 0.6550 0.0022
�1.00 0.7960 0.7342 0.0000 0.9248 0.8072 0.0021
�0.50 0.8009 0.7263 0.0000 0.9248 0.8749 0.0018
�0.30 0.8525 0.7108 0.0000 0.9095 0.8985 0.0017

0.00 0.8640 0.7045 0.0000 0.8905 0.9132 0.0016
0.30 0.8640 0.7045 0.0000 0.8017 0.9357 0.0015
0.50 0.8640 0.7045 0.0000 0.8017 0.9375 0.0015
2=3 0.8640 0.7045 0.0001 0.7620 0.9375 0.0015

0.70 0.8647 0.6363 0.0001 0.7620 0.9375 0.0015
1.00 0.8745 0.5150 0.0001 0.7434 0.9393 0.0015
2.00 0.8962 0.3290 0.0002 0.4791 0.9510 0.0003
5.00 0.9025 0.2422 0.0002 0.4630 0.9671 0.0001
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extreme dip alternative (g ¼ �0:9 is near the end of the range) but a moderate bump

alternative. More extreme bump alternatives like those generated by g ¼ 2 or 2.5 would

lead to greater increases in power for T3 over T1 for such alternatives.

	 The powers are decreasing functions of l within the power divergence family, and

increasing functions of a for the BWCS and BWHD families for the dip alternatives, but the

reverse happens for bump alternatives.

	 For bump alternatives, the powers of T2 are lower than those of T1 (in fact lower than the

size of the test), since here the truth is further away from the alternative compared to the

null; similarly, powers of T3 are smaller than those of T1 under dip alternatives.

Thus in the scenarios considered in this limited study it is observed that it may be prefer-

able to use disparity tests of the form T2 with small values of l (in the Cressie–Read family)

or large values of a (within the BWHD or BWCS family) against suspected isotonic alterna-

tives. Similarly disparity tests of the form T3 may be preferable with large values of l (in the

Cressie–Read family) or small values of a (within the BWHD or BWCS family) against

TABLE II Power of the T1, T2 and the T3 Test Statistics for the Cressie–Read Family for the
n¼ 25, k¼ 4 Case, Obtained via Exact Computations (Rounded to Four Places of Decimals). The
Size of the Test is 0.05.

T1 T2 T3

l g¼ 1.5 g¼�0.9 g¼ 1.5 g¼�0.9 g¼ 1.5 g¼�0.9

�5.00 0.7818 0.8963 0.0000 0.9798 0.7988 0.0023
�2.00 0.8328 0.8961 0.0000 0.9793 0.8751 0.0023
�1.00 0.8889 0.8943 0.0000 0.9635 0.9319 0.0023
�0.50 0.8915 0.8943 0.0000 0.9524 0.9498 0.0023
�0.30 0.9144 0.8913 0.0000 0.9434 0.9498 0.0023

0.00 0.9215 0.8791 0.0000 0.9304 0.9570 0.0022
0.30 0.9305 0.8223 0.0000 0.9151 0.9689 0.0022
0.50 0.9310 0.8016 0.0000 0.9151 0.9689 0.0022
2=3 0.9343 0.7762 0.0000 0.8995 0.9699 0.0022

0.70 0.9343 0.7762 0.0000 0.8735 0.9699 0.0022
1.00 0.9407 0.7332 0.0000 0.8413 0.9701 0.0020
2.00 0.9562 0.4278 0.0000 0.7032 0.9826 0.0003
5.00 0.9566 0.3823 0.0000 0.4809 0.9846 0.0001

TABLE III Power of the T1, T2 and the T3 Test Statistics for the Cressie–Read Family for the
n¼ 20, k¼ 5 Case, Obtained via Exact Computations (Rounded to Four Places of Decimals). The
Size of the Test is 0.05.

T1 T2 T3

l g¼ 1.5 g¼�0.9 g¼ 1.5 g¼�0.9 g¼ 1.5 g¼�0.9

�5.00 0.2253 0.5880 0.0000 0.8360 0.4074 0.0145
�2.00 0.2253 0.5880 0.0000 0.8069 0.4188 0.0145
�1.00 0.2253 0.5880 0.0001 0.7766 0.4877 0.0145
�0.50 0.3361 0.5875 0.0001 0.7530 0.5643 0.0145
�0.30 0.4468 0.5693 0.0003 0.7502 0.6157 0.0145

0 0.6100 0.4466 0.0003 0.7502 0.6956 0.0051
0.30 0.6605 0.3760 0.0003 0.6633 0.7502 0.0039
0.50 0.6806 0.3216 0.0003 0.5360 0.7851 0.0022
2=3 0.6907 0.2851 0.0003 0.4954 0.8126 0.0020

0.70 0.6907 0.2851 0.0004 0.4936 0.8126 0.0020
1.00 0.6697 0.2720 0.0004 0.4089 0.8173 0.0020
2.00 0.7306 0.1896 0.0014 0.2772 0.8530 0.0011
5.00 0.7498 0.1464 0.0014 0.2452 0.8803 0.0004
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suspected antitonic alternatives. A general recommendation, of course, will require more

extensive investigation and we do not wish to claim the results to be any more general

than can be suggested by our limited numerical findings. However, since the test statistic

T2 ðT3Þ explicity utilizes the information about isotonic (antitonic) ordering, we expect

T2 ðT3Þ to perform better than T1 when the isotonic (antitonic) ordering is indeed true.

We next perform a simple comparison of the convergence of the statistics to their asymp-

totic chi-bar square limits through the speed of convergence of the moments of the disparity

tests under the null hypothesis H0: p ¼ p0 as k goes to infinity. For simplicity we restrict

ourselves to the Cressie–Read family in this case, although similar analysis can be easily

done with the BWHD and BWCS. Defining wi ¼
ffiffiffi
n

p
ð p�i � p0iÞ we have the Taylor series

expansion

2nI lð p�; p0Þ ¼
Xk
i¼1

w2
i

p0i

�
l� 1

3
ffiffiffi
n

p
Xk
i¼1

w3
i

p2
0i

þ
ðl� 1Þðl� 2Þ

12n

Xk
i¼1

w4
i

p3
0i

þ Opðn
�3=2Þ ð5Þ

under H0. Since it appears to be intractable to obtain the moments of 2nI lð p�; p0Þ using (5),

we compare the simulated moments of 2nI lð p�; p0Þ for different values of l with the

TABLE IV Power of the T1, T2 and the T3 Test Statistics for the BWHD Family for the n¼ 20,
k¼ 4 Case, Obtained via Exact Computations (Rounded to Four Places of Decimals). The Size of
the Test is 0.05.

T1 T2 T3

a g¼ 1.5 g¼�0.9 g¼ 1.5 g¼�0.9 g¼ 1.5 g¼�0.9

0.00 0.8745 0.5150 0.0001 0.7434 0.9393 0.0015
0.10 0.8640 0.7045 0.0001 0.7620 0.9375 0.0015
0.20 0.8640 0.7045 0.0000 0.8017 0.9375 0.0015
0.30 0.8640 0.7045 0.0000 0.8905 0.9132 0.0016
0.40 0.8525 0.7048 0.0000 0.9094 0.8985 0.0017
0.50 0.8009 0.7263 0.0000 0.9248 0.8749 0.0018
0.60 0.7960 0.7341 0.0000 0.9248 0.8629 0.0018
0.70 0.7353 0.7410 0.0000 0.9248 0.8013 0.0021
0.80 0.7017 0.7428 0.0000 0.9288 0.7403 0.0021
0.90 0.6500 0.7434 0.0000 0.9288 0.7067 0.0022
1.00 0.6500 0.7434 0.0000 0.9326 0.6550 0.0022

TABLE V Power of the T1, T2 and the T3 Test Statistics for the BWCS Family for the n¼ 20,
k¼ 4 Case, Obtained via Exact Computations (Rounded to Four Places of Decimals). The Size of
the Test is 0.05.

T1 T2 T3

a g¼ 1.5 g¼�0.9 g¼ 1.5 g¼�0.9 g¼ 1.5 g¼�0.9

0.00 0.8745 0.5150 0.0001 0.7434 0.9393 0.0015
0.10 0.8647 0.6363 0.0001 0.7620 0.9375 0.0015
0.20 0.8640 0.7045 0.0000 0.8017 0.9375 0.0015
0.30 0.8640 0.7045 0.0000 0.8572 0.9276 0.0015
0.40 0.8526 0.7049 0.0000 0.8905 0.9132 0.0016
0.50 0.8526 0.7049 0.0000 0.9248 0.8985 0.0017
0.60 0.8009 0.7263 0.0000 0.9248 0.8629 0.0018
0.70 0.7960 0.7341 0.0000 0.9248 0.8092 0.0019
0.80 0.7353 0.7410 0.0000 0.9248 0.8013 0.0021
0.90 0.7017 0.7428 0.0000 0.9288 0.7067 0.0022
1.00 0.6500 0.7434 0.0000 0.9326 0.6550 0.0022
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moments of (its limiting asymptotic) chi-bar square distribution. We consider the first three

moments for the restrictions of the simple order and the simple tree order with 100,000 repli-

cations and a sample size of 500. We consider k ¼ 3, 7, 10, 20. The results are expected to be

better for larger k. The rth moments of the chi-bar square distribution for the simple order and

the simple tree order are given by

Xk
i¼1

Pði; kÞði� 1Þðiþ 1Þ � � � ðiþ 2r � 3Þ

where the level probabilities Pði; kÞ are appropriately defined (Robertson et al., 1988).

In Table VI, we provide the exact moments from chi-bar squared distribution using the

above formula. The l values, correct up to second decimal places, for which the simulated

moments of the Cressie–Read family statistics is closest to the corresponding moment is

provided along with the final absolute difference in parenthesis. For each k, the minimizing

value of l seems to decrease for higher moments for both orders. Also the magnitude of the

absolute difference increases slightly with higher moments. It is seen that we do not get clear

choices of l ¼ 1 or l ¼ 2=3 as in Cressie and Read (1984), but they do converge to

somewhere in or around the interval ð1=3; 2=3Þ. In the case of tree order, the case of

k ¼ 3 produces values of l much larger than 1, which is unexpected. On the whole, however,

we expect the convergence of l for the Cressie–Read family statistics to be reasonable in the

interval ð1=3; 2=3Þ for large k.
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