Transforming Resources within a Quantum Resource Theory

Eric Chitambar

September 28, 2017

SIU Department of Mathematics Colloquium

Outline

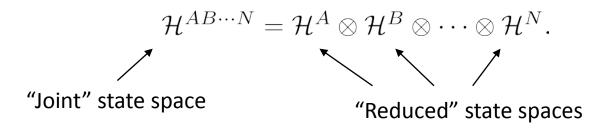
- Survey the basic mathematical formalism of finite-dimensional quantum mechanics.
- Introduce the general framework of quantum resource theories.

• Describe the concepts of resource measures and resource transformations.

• Provide examples of resource transformations in entanglement and coherence theory.

Mathematical Structure of Quantum Mechanics

- Every quantum system is assigned a Hilbert space \mathcal{H} called **state space**.
 - Finite-dimensional systems: $\mathcal{H} \approx \mathbb{C}^d$.
- Multiple quantum systems are combined by a tensor product of vector spaces.



Mathematical Structure of Quantum Mechanics

- Physical states of a system are described by **density operators** acting on the state space.
 - More precisely, for state space \mathcal{H} , let $\mathcal{L}(\mathcal{H})$ denote the set of linear operators acting on \mathcal{H} .
 - A density operator is any element $\rho \in \mathcal{L}(\mathcal{H})$ such that:

(i) ρ≥ 0,
 (ii) Tr(ρ) = 1.

Any operator satisfying these properties represents a valid state of the quantum system.

- The set of density operators acting on \mathcal{H} will be denoted $\mathcal{D}(\mathcal{H})$.

Example:

• For bipartite space $\mathcal{H}^A \otimes \mathcal{H}^B$, a density operator $\rho^{AB} = \sum_{i,j=1}^{d_A^2 d_B^2} c_{ij} M_i \otimes N_j$ satisfies

(i)
$$\forall |\Psi\rangle \in \mathcal{H}^A \otimes \mathcal{H}^B$$
: $\sum_{i,j=1}^{d_A^2, d_B^2} c_{ij} \langle \Psi | M_i \otimes N_j | \Psi \rangle \ge 0$, (ii) $\sum_{i,j=1}^{d_A^2, d_B^2} c_{ij} \operatorname{Tr}(M_i) \operatorname{Tr}(N_j) = 1$.

Mathematical Structure of Quantum Mechanics

- A quantum operation is any physical process that maps density matrices to density matrices.
 - It is a positive, trace-preserving map \mathcal{E} :
- (i) $\mathcal{E}(\rho) \geq 0$, (ii) $\operatorname{Tr}(\mathcal{E}(\rho)) = 1$.

 \mathcal{I}^B is the identity map (i) $\mathcal{E}^A \otimes \mathcal{I}^B(\rho^{AB}) \ge 0$, on system B.

- Even stronger, these maps preserve density matrices when acting on just a subsystem:
- (ii) $\operatorname{Tr}(\mathcal{E}^A \otimes \mathcal{I}^B(\rho^{AB})) = 1$.
- These maps are called **completely positive**.

Every quantum operation is represented by a tracepreserving completely positive (CPTP) map.

Completely positive trace-preserving (CPTP) maps

- Important examples:
 - "Measurment Maps"
 - Any collection of positive operators $\{\Pi_k\}_{k=1}^K$ such that $\sum_{k=1}^K \Pi_k = 1^{\mathcal{H}}$ represents a quantum measurement.
 - In terms of a CPTP maps, measurements are described by a measurement map $\mathcal{M}: \mathcal{D}(\mathcal{H}) \to \mathcal{D}(\mathbb{C}^K)$, such that

$$\mathcal{M}(\rho) = \sum_{k=1}^{K} \text{Tr}(\rho \Pi_k) |k\rangle\langle k|$$

 $|k\rangle\langle k|$ represents the state of some classical measurement device reading "outcome k".

 $tr(\rho\Pi_k)$ represents the probability of obtaining "outcome k" when measuring the state ρ .

Completely positive trace-preserving (CPTP) maps

- Important examples:
 - "Partial Trace"
 - If $\rho^{AB} \in \mathcal{D}(\mathcal{H}^A \otimes \mathcal{H}^B)$ is a state for the joint state space $\mathcal{H}^A \otimes \mathcal{H}^B$, the **reduced state** of system A (or B) is described by the **partial trace** CPTP map $\operatorname{Tr}_B : \mathcal{D}(\mathcal{H}^A \otimes \mathcal{H}^B) \to \mathcal{D}(\mathcal{H}^A)$:

For
$$\rho^{AB} = \sum_{i,j=1}^{d_A^2 d_B^2} c_{ij} M_i \otimes N_j$$
,

$$\operatorname{Tr}_{B}(\rho^{AB}) := \sum_{i,j=1}^{d_{A}^{2} d_{B}^{2}} c_{ij} M_{i} \operatorname{Tr}(N_{j})$$
$$= \sum_{i=1}^{d_{A}^{2}} c'_{i} M_{i} =: \rho^{A}.$$

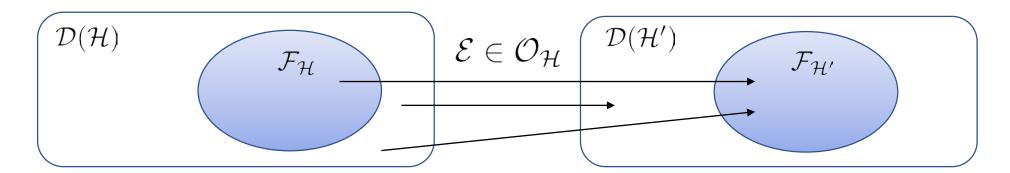
Quantum Resource Theories

- In many practical situations, the full are snal of CPTP maps is not accessible to the experimenter.
 - Due to experimental limitations or environmental circumstances, the experimenter cannot perform the most general processes that nature allows.
 - For example, maybe a quantum computering engineer can only use certain types of gates in the design of a quantum computer circuit board.
 - Or maybe two individulas want to communicate over some communication channel, but they only have a partially shared reference frame. Then there are a limited number of degrees of freedom to encode their messages.
- A quantum resource theory provides the mathematical framework to model the physics in these restricted settings.

Quantum Resource Theories

Definition: A quantum resource theory (QRT) is an assignment that associates every Hilbert space \mathcal{H} with a tuple $(\mathcal{F}_{\mathcal{H}}, \mathcal{O}_{\mathcal{H}})$, where $\mathcal{F}_{\mathcal{H}}$ is a collection of density operators $\rho \in \mathcal{D}(\mathcal{H})$ and $\mathcal{O}_{\mathcal{H}}$ is a collection of CPTP maps acting on $\mathcal{D}(\mathcal{H})$, such that:

If $\mathcal{E}: \mathcal{D}(\mathcal{H}) \to \mathcal{D}(\mathcal{H}')$ belongs to $\mathcal{O}_{\mathcal{H}}$, then $\mathcal{E}(\rho) \in \mathcal{F}_{\mathcal{H}'}$ for all $\rho \in \mathcal{F}_{\mathcal{H}}$.



- The states in $\mathcal{F}_{\mathcal{H}}$ are called **free states**, and the operations in $\mathcal{O}_{\mathcal{H}}$ are called **free operations**.
- Any state $\rho \in \mathcal{D}(\mathcal{H}) \setminus \mathcal{F}_{\mathcal{H}}$ is called a **resource state**.

Entanglement: The Prototypical QRT

- The theory of quantum entanglement is the paradigmatic example of a quantum resource theory.
- The free states are convex combinations of tensor product states:

$$\rho^{AB} = \sum_{k} p_{k} \sigma_{k}^{A} \otimes \omega_{k}^{B} \quad \text{where } \sum_{k} p_{k} = 1,$$

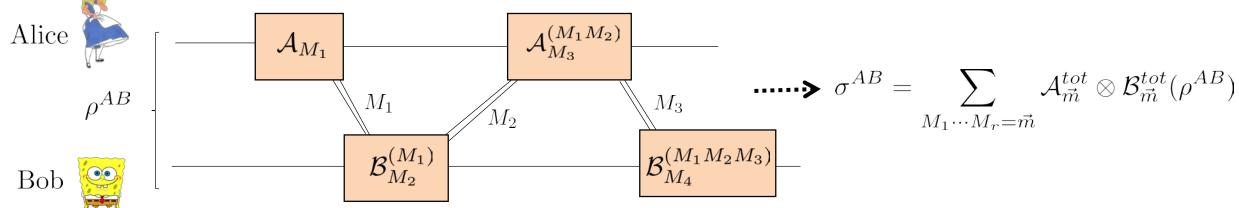
$$\sigma_{k}^{A} \in \mathcal{D}(\mathcal{H}^{A}), \ \omega_{k}^{B} \in \mathcal{D}(\mathcal{H}^{B})$$
- These are called **separable states**.
$$\sigma_{k}^{A} \otimes \omega_{k}^{B} \in \mathcal{D}(\mathcal{H}^{A} \otimes \mathcal{H}^{B}).$$

• Any state that cannot be expressed as a convex combination of product states is called **entangled**.

Entanglement: The Prototypical QRT

• The free operations consist of Local Operations and Classical Communication (LOCC).

Alice performs a quantum operation $\{A_{M_1}\}_{M_1=1...}$ on her subsystem generating measurement outcome M_1 . She announces this to Bob.



Bob performs conditional quantum operation $\{\mathcal{B}_{M_2}^{(M_1)}\}_{M_2=1...}$ on his subsystem generating measurement outcome M_2 . He announces this Alice.

- The only information exchanged between Alice and Bob is classical.
- Entanglement cannot be generated in this way.

Three Other Examples of a QRT

• Asymmetry = For some group G with unitary representation U_g ,

- Free states: $\rho = \tau(\rho) := \int_G dg U_g(\rho) U_q^{\dagger}$

- Free operations: $[\mathcal{E}, \tau] = 0$

• Quantum Thermodynamics

For a Hamiltonian H - Free states: on system \mathcal{H} , $\gamma_T =$

$$\gamma_T = e^{-H/kT}/\mathrm{Tr}(e^{-H/kT}).$$

(Gibbs state at temperature T)

- Free operations:

$$\mathcal{E}(\rho) = \text{Tr}_B[V(\rho \otimes \tilde{\gamma}_T)V^{\dagger}]$$

where $\tilde{\gamma}_T$ is the Gibbs state at temperature Tfor some Hamiltonian \tilde{H} , and $[V, H \otimes 1 + 1 \otimes \tilde{H}] = 0$.

• Quantum Coherence $\begin{array}{c} \text{For a fixed orthonormal} \\ \text{basis } \mathcal{B} = \{|i\rangle\}_{i=1}^d, \end{array}$ - Free states: ρ diagonal in basis \mathcal{B} .

- Free operations:

Multiple proposals (stay tuned...)

Resource Measures and Monotones

• For a given quantum resource theory, we want to quantify the amount of resource in a given state.

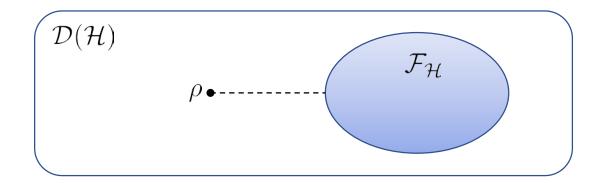
- **Definition**: A function $\phi : \mathcal{D}(\rho) \to \mathbb{R}$ qualifies as a resource measure if:
 - (i) $\phi(\rho) \ge 0$ for all ρ , and $\phi(\rho) = 0$ if $\rho \in \mathcal{F}$.

"Free states have no resource."

(ii) ϕ is monotonically decreasing under the free operations,

$$\phi(\rho) \ge \phi(\mathcal{E}(\rho))$$
 for all ρ and all $\mathcal{E} \in \mathcal{O}$.

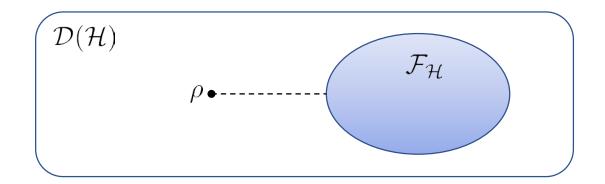
"The resource value cannot be increased by the free operations."



- The idea is to capture the amount of resource in ρ by "how far" it is from the set of free states.
 - Trace norm measures:

For operator A, let $||A||_1 = \text{Tr}\sqrt{A^{\dagger}A}$ denote its "trace norm."

It is known that $||A||_1 \ge ||\mathcal{E}(A)||_1$ for any CPTP map \mathcal{E} , i.e. the trace norm is contractive under CPTP maps.

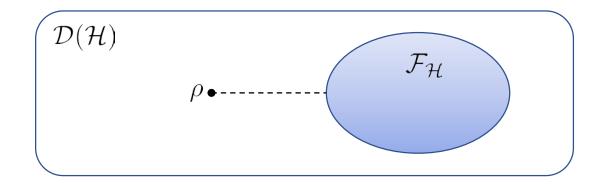


• Define the trace norm resource measure:

$$\mathcal{D}(\rho) = \inf_{\sigma \in \mathcal{F}} ||\rho - \sigma||_1.$$

-
$$\mathcal{D}(\rho) = 0$$
 if $\rho \in \mathcal{F}$.

-
$$\mathcal{D}(\rho) \geq \mathcal{D}(\mathcal{E}(\rho))$$
 for all ρ and all $\mathcal{E} \in \mathcal{O}$.

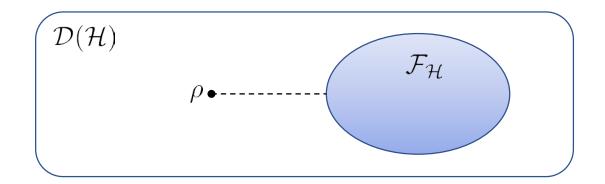


- Robustness-based measure:

For state ρ , define its **resource robustness**:

$$\mathcal{R}(\rho) = \inf\{\lambda : (1 - \lambda)\sigma + \lambda\rho \in \mathcal{F}, \ \sigma \in \mathcal{D}(\mathcal{H})\}.$$

- This quantifies the minimum amount of "noise" that must be mixed with ρ to destroy the resource.



- Entropic-based measure:

For state ρ , define its **relative entropy of resource**:

$$Rel(\rho) = \inf_{\sigma \in \mathcal{F}} S(\rho||\sigma),$$

where $S(\rho||\sigma) = \text{Tr}[\rho \log(\rho/\sigma)]$ is the quantum relative entropy.

Resource Transformations in QRT

• One of the most important questions in the study of a QRT is whether one state ρ can be transformed into another σ using the free operations.

$$\rho \xrightarrow{\mathcal{E} \in \mathcal{O}} \sigma$$
?

• Such a relationship provides an *operational* comparison between the resource content in two different states:

If $\rho \xrightarrow{\varepsilon \in \mathcal{O}} \sigma$, then ρ contains at least as much resource as σ , since any task using σ and the allowed operations can also be performed by ρ and the allowed operations.

Resource Transformation in Entanglement Theory

- Given two states ρ^{AB} and σ^{AB} when can $\rho^{AB} \to \sigma^{AB}$ by LOCC?
- In general this problem is unsolved. But for pure states, there is an easy answer.
- For a pure state $|\Psi\rangle^{AB}$, define its k^{th} Ky-Fan norm:

$$E_k(|\Psi\rangle) = \sum_{i=1}^k \lambda_i^{\downarrow} (\text{Tr}_B |\Psi\rangle\langle\Psi|),$$

where $\lambda_i^{\downarrow}(X)$ denotes the i^{th} largest eigenvector of positive operator X.

- For every k, $E_k(|\Psi\rangle)$ is a resource monotone under LOCC.
- In fact, $|\Psi\rangle^{AB} \to |\Phi\rangle^{AB}$ by LOCC iff $E_k(|\Psi\rangle) \ge E_k(|\Phi\rangle)$ for all k.

Resource convertibility is determined entirely by a finite number of monotones!

Resource Transformation in Coherence Theory

• In the quantum resource theory of coherence, free states are diagonal in some fixed basis $\mathcal{B} = \{|i\rangle\}_{i=1}^d$:

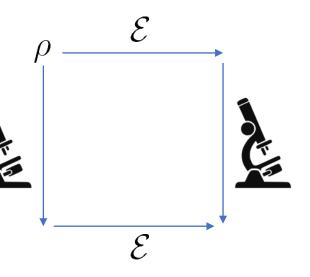
$$\rho = \sum_{i=1}^{d} p_i |i\rangle\langle i|.$$

• One type of free operations: dephasing-covariant.

Definition: A CPTP map \mathcal{E} is called a **dephasing-covariant** incoherent operation (DIO) if

$$\mathcal{E}\left(\sum_{i=1}^{d}\langle i|\rho|i\rangle|i\rangle\langle i|\right) = \sum_{i=1}^{d}\langle i|\mathcal{E}(\rho)|i\rangle|i\rangle\langle i|:$$

The map commutes with a measurement on the quantum system



Resource Transformations using DIO

- Dephasing covariant operations map the set of free states onto itself.
- What about for resource states, i.e. non-diagonal states?
- When is it possible to transform $\rho \to \sigma$ using a DIO map?
- In general the problem is not solved, however for two-level systems the answer is known.
- In two-level (qubit) systems: $\rho = \begin{pmatrix} p & r \\ r & 1-p \end{pmatrix}.$ W.l.o.g. assume $r \geq 0$.

Resource Transformations using DIO

• Recall the resource robustness:

$$\mathcal{R}(\rho) = \inf\{\lambda : (1 - \lambda)\sigma + \lambda\rho \in \mathcal{F}, \ \sigma \in \mathcal{D}(\mathcal{H})\}.$$

- It is a monotone under DIO.

• Introduce a new robustness measure:

$$\mathcal{R}_{\Delta}(\rho) = \inf\{\lambda : (1-\lambda)\sigma + \lambda\rho \in \mathcal{F}, \ \langle i|\sigma - \rho|i\rangle = 0, \ \forall i = 1, \dots d, \ \sigma \in \mathcal{D}(\mathcal{H})\}.$$

- This is also a monotone under DIO.

For
$$\rho = \begin{pmatrix} p & r \\ r & 1-p \end{pmatrix}$$
: $\mathcal{R}(\rho) = 2r,$ $\mathcal{R}_{\Delta}(\rho) = \frac{r}{\sqrt{p(1-p)}}.$

$$\rho \to \sigma$$
 under DIO iff $\mathcal{R}(\rho) \ge \mathcal{R}(\sigma)$ and $\mathcal{R}_{\Delta}(\rho) \ge \mathcal{R}_{\Delta}(\sigma)$.

Conclusions

• Quantum resource theories provide a framework to isolate certain features of a quantum system, quantify it, and study its dynamical properties.

- A number of open problems involve understanding convertibility conditions $\rho \to \sigma$ in a given QRT.
 - The same mathematical structures appear in many different resource theories, even those which seem otherwise unrelated.
- For example, by studying the convertibility of states under DIO (or similar operations) in coherence theory, we can learn something about the convertibility of states in entanglment theory.

Thank You