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Abstract

We use a simple counting function to introduce

two different aspects of Langlands program

through some basic special cases: Spectral

theory of Maass forms and Artin reciprocity

law. The talk is aimed at a general audience

with some very basic mathematical familiarity.

But no specialized knowledge of number the-

ory is assumed.
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Let us start with the counting function

r(m) = Number of points (a, b) with integer

coordinates such that a2 + b2 = m, where m is

a natural (whole) number.

Or said in mathematical notation

r(m) = #{(a, b) ∈ Z2|a2 + b2 = m}, (1)

where Z denotes the set (ring) of integers.

We now mention two well–known problems.
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Problem 1. Determine all whole numbers m

such that r(m) ̸= 0.

Problem 2. Let x be a positive real number.

Estimate

P (x): =
∑

m≤x

r(m) = The number of

integral points inside the circle of (2)

radius
√

x centered at the origin.
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Here are the answers:

Answer to Problem 1 (Fermat, Euler, Gauss).

Write

m = m1n2,

with m1 and n integers, where m1 is a product

of distinct primes (square free). The number

r(m) ̸= 0 if and only if every prime divisor of m1

is either 2 or p ≡ 1(4), said p is congruent to

1 modulo 4, i.e., 1 is the remainder of division

of p by 4.

(5 = 12 + 22,17 = 12 + 42,29 = 22 + 52,

37 = 12 + 62,41 = 42 + 52).
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This introduces us to the notion of “residue

modulo an integer r”. This means all possible

remainders that one gets upon dividing inte-

gers by r. Clearly that is the set

{0,1,2, . . . , r − 1} : = Z/rZ (3)

We note that this set is closed under addi-

tion and multiplication if we continue to take

residues (remainders).

This is an example of the structure of a “ring”.

It satisfies similar structural properties as the

ring of integers Z. For example if x is in

{0,1, . . . , r} = Z/rZ,

−x = r − x since

−x + (r − x) = r ≡ 0(mod r).
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Note that integers don’t have reciprocals (in-

verses) unless they are 1 or −1. On the hand

every integer 0 < x < r which is relatively prime

to r, i.e., doesn’t have any common factor with

r has an inverse mod r.

Example. In Z/6Z = {0,1,2,3,4,5}, 5−1 = 5,

since 5 · 5 = 25 ≡ 1(6). Thus 1 and 5 are the

only invertible elements of Z/6Z.

Conclusion. If r = p is a prime, then every

non–zero member of Z/pZ is invertible. Such

a ring is called a field and Z/pZ is an example

of what we call a finite field. We will return

to this momentarily.
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Answer to Problem 2 (Gauss Circle Prob-

lem)

P (x) ∼ πx + O(
√

x), (4)

(π = 3.1415 . . .) where O(
√

x) means

O(
√

x)/
√

x

is bounded. In other words πx indicates the

leading or dominant behaviour of P (x) as x

gets larger and larger. The remainder or error

term which gives the behaviour of P (x) − πx

is expected to be O(x
1
4+ε). But this is not

yet proved and the best error term so far is

O(x
23
73+ε). Here ε is any small positive number.
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It is rather simple to show (4):
P (x) is approximately the number of unit squares

whose corners have integral coordinates and lie

inside the circle of radius
√

x centered at the

origin:

Gauss Circle Problem

A good estimate of this number is the area of

the circle and thus

P (x) ∼ π(
√

x)2 = area of the circle.

The error term is then no larger than the perime-

ter of the circle which is O(
√

x).
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Problem 2 is a question about counting points

in a “grid” or “lattice” inside a domain, here

a circle is a “Euclidean space”. It can be

asked about other types of spaces, for exam-

ple, “hyperbolic spaces” like the surface of hy-

perboloid, and a circle there: the set of points

of equal distance from a fixed point — but

here the distance is a “hyperbolic distance”.

The difference between a hyperbolic plane and

a Euclidean one is that the hyperbolic one

is “curved” by a negative constant curvature,

while the Euclidean one is flat.
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How do we produce hyperbolic surfaces?

One then takes a Euclidean space and deforms

it under the action of a discrete matrix group:

Euclidean space = upper half plane of complex

numbers :

H = {z ∈ C| Im(z) > 0}.

Discrete group (closed under matrix multipli-

cation and inversion) = SL2(Z) or its “congru-

ence” subgroups Γ

SL2(Z) =

{(

a b
c d

)
∣

∣

∣

∣

∣

ad − bc = 1, a, b, c, d ∈ Z

}

We will then identify two points z, z′ in H, if

z′ =
az + b

cz + d
: =

(

a b
c d

)

· z

for some

(

a b
c d

)

∈ Γ.
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The set of orbits obtained under these iden-

tifications will be denoted by Γ\H = our hy-

perbolic space. We note that the “simply con-

nected” space H is the “universal cover” of

Γ\H.

Hyperbolic spaces have their own distance func-

tions (you take a geodesic and measure it)

d(z, w) = log
|z − w| + |z − w|
|z − w|− |z − w|

, (z, w ∈ H)

whose hyperbolic cosine, cosh equals

cosh(d(z, w)) =
1

2
(ed(z,w)+e−d(z,w)) = 1+2u(z, w),

where

u(z, w): =
|z − w|2

4 Im(z) Im(w)
.
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Hyperbolic distance is computed by means of

the measure |dz|/y, where |dz| is the euclidean

measure, which is inversely proportional to the

imaginary coordinate y as opposed to the eu-

clidean one.

Here is a hyperbolic circle centered at i =
√
−1

and of hyperbolic radius r. The euclidean cen-

ter of circle is at i cosh(r). One sees that when

radius is depicted in euclidean plane, it seems

to defer from one point to another. But their

actual hyperbolic length are equal.
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i

i cosh r

0

A hyperbolic circle
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Recall that the euclidean lattice of points with

integral coordinates is obtained by taking ori-

gin (0,0) = O and translating under Z × Z by

(a, b) · O = (a, b) = (0 + a,0 + b).

A hyperbolic lattice is obtained the same way:

Take z ∈ H and let γ ∈ Γ act on it as

γ · z =

(

a b
c d

)

· z =
az + b

cz + d
.

The lattice is then denoted by Γ·z.

The problem is again to estimate the number

of (lattice) points in the lattice Γ ·z inside

the hyperbolic circle of “radius” x, centered at

a point w ∈ H, i.e., count

Pz,w(x): = #{γ ∈ Γ | 2cosh(d(γ · z, w)) ≤ x}

= #{γ ∈ Γ | 2 + 4u(γ · z, w) ≤ x}.
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Examples and Corollaries: Take z = w =
√
−1 = i and Γ = SL2(Z). Then Pz,w(x) gives

Pi,i(x) = #{(a, b, c, d) ∈ Z4 | ad − bc = 1 and

a2 + b2 + c2 + d2 ≤ x}

Gauss’s circle area argument in the Euclidean

plane no longer works since in hyperbolic ge-

ometry the isoperimetric inequality says

4πA + A2 ≤ L2,

where A and L are the area and perimeter of

the hyperbolic circle. Thus there are no domi-

nant quantity and A and L are of same magni-

tude. The techniques involved are much more

subtle.
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One has to study a certain space of functions:

L2(Γ\H) =

{

f : H → C | f(γ · z) = f(z), γ ∈ Γ,

∫

Γ\H
|f(z)|2

dxdy

y2
< ∞

}

,

where z = x + y
√
−1 ∈ H, and consider the

action of hyperbolic Laplacian

∆ = −y2

(

∂2

∂x2
+

∂2

∂y2

)

on L2(Γ\H) and look at its eigenfunctions, i.e.,

all those f ̸= 0 in L2(Γ\H) for which there

exists a complex number λ such that

∆f = −y2

(

∂2f

∂x2
+

∂2f

∂y2

)

= λf.

Clearly f depends on λ. In this setting λ ≥ 0.
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If there are no eigenvalues λ for ∆ in the range

0 < λ < 2
9, then using a trace formula one gets

Pz,w(x) =
cπ

Vol(Γ\H)
x + O(x2/3),

where c = 1 if −I ̸∈ Γ and c = 2, otherwise.

In the case of Γ = SL2(Z), −I ∈ Γ, one gets

Pz,w(x) =
2π

π/3
x + O(x2/3)

= 6x + O(x2/3)

and one gets

#{(a, b, c, d) ∈ Z4|ad − bc = 1, a2 + b2 + c2

+d2 ≤ x} = 6x + O(x2/3).
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The fact that there are no 0 < λ < 2/9, was

proved by Henry Kim and myself in 2002, as

a first step towards striking improvements on

Selberg’s conjecture which demands no λ must

exist in the range 0 < λ < 1/4, all conse-

quences of new cases of functoriality, a ground

breaking conjecture due to Robert Langlands

which has revolutionized a major part of num-

ber theory.

Another result that one can show by choosing

Γ appropriately is

∑

m≤x

r(m)r(m + 1) = 8x + O(x2/3).
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Remark 1. The space of functions L2(Γ\H)

is an example of automorphic forms. They

are the Maass forms or forms of “weight” zero

on H, i.e., function on H, invariant under ac-

tion by Γ. Their analogue when “weight” is 2

are those which are in one–one correspondence

with “elliptic curves” by means of Shimura–

Taniyama conjecture which was proved by An-

drew Wiles for the class of elliptic curve needed

in his proof of Fermat’s Last Theorem. We

recall that a modular form of weight k is a

function on H satisfying

f(γ · z) = (cz + d)kf(z),

for all γ =

(

a b
c d

)

∈ Γ.
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Remark 2. The asymptotic formula for Pz,w(x)

is obtained by expressing Pz,w(x) in terms of an

“automorphic” kernel function which can then

be studied by means of spectral behaviour of

Maass forms.

Reference. An excellent treatment of how

Pz,w(x) is computed and its consequences is

H. Iwaniec’s book: Spectral methods of auto-

morphic forms, GTM, Vol. 53, AMS, 2002.
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We can now address Problem 1 and explain

how intrinsically it is connected to Problem 2

and “Langlands Program”.

Consider the equality

(a2 + b2)(c2 + d2) = (ad − bc)2 + (ac + bd)2.

Thus if all the prime numbers dividing m1 can

be written as sum of two squares, then m will.

The problem is then to check for prime p

a2 + b2 ≡ 0(mod p).
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We thus only need to look at a and b module

p, i.e., as members of the field Z/pZ in which

every element has an inverse, reducing us to

(ab−1)2 + 1 ≡ 0(mod p).

If we now set x : = ab−1, then we need to

know for what p, the equation x2 + 1 = 0 has

a solution in Z/pZ.
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Suppose x2 + 1 = 0 has a solution. Then, p

being odd, (p − 1)/2 is an integer and thus

xp−1 = (x2)(p−1)/2 ≡ (−1)(p−1)/2(mod p).

Now consider the product

x · 2x · 3x . . . (p − 1)x = (p − 1)!xp−1.

Note that no two of the factors are equal

mod p, since every non–zero element of Z/pZ

is invertible and the numbers 1,2, . . . , p− 1 are

different modulo p.
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Thus

x·2x . . . (p−1)x = (p−1)!xp−1 ≡ (p−1)!(mod p)

or simply

xp−1 ≡ 1(mod p).

Thus

(−1)(p−1)/2 = 1

or p ≡ 1(4).

For the converse, let

x = ((p − 1)/2)!

which can be shown to satisfy x2+1 ≡ 0(mod p).

This problem is equivalent to whether the poly-

nomial x2 +1 when reduced modulo p decom-

poses to two distinct linear factors and the an-

swer depends on congruence class of p modulo

4.
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One can ask this about an arbitrary monic

polynomial with integral coefficients, whether

it “splits completely” modulo a prime p. As we

just saw with f(x) = x2+1, f splits for half the

primes (p ≡ 1(4)) and remains irreducible for

the other half (p ≡ 3(4)) and these are fairly

refined, although elementary, facts.

The answer for an arbitrary f is very subtle.

One wants to come up with tools that ad-

dresses the problem for a general f . We can

consider the field of rational numbers Q and

build a very large field Q containing Q which

contains all the roots of all the polynomials

over Q. We then let Gal(Q/Q) be the group

of all the automorphisms of Q which act like

identity on Q, the “Galois group” of Q/Q.
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For a given monic integral irreducible polyno-

mial f , we can adjoin all the roots of f to Q to

get a field L and then consider Gal(L/Q) de-

fined the same way and call it Gal (f). If this

Galois group is abelian, then the problem of

splitting mod p can be resolved through class

field theory and Artin reciprocity map.
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Let us explain this through a simple example.

Assume L = Q(
√

d), and thus L contains the

roots of f(x) = x2 − d, d not a square. Then

Galois group Gal (f) is easy to determine. The

roots of f are ±
√

d. Note that

L = {a + b
√

d|a, b ∈ Q}.

An automorphism σ of L which acts like iden-

tity on Q, will send

a + b
√

d -→ a + bσ(
√

d).

and thus
√

d -→ σ(
√

d). Note that

(σ(
√

d))2 = σ(d) = d

and thus σ(
√

d) =
√

d or −
√

d.

Thus
Gal (L/Q) = Gal(f) = {1, σ},

where σ(
√

d) = −
√

d.
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If we stay away from the few primes that divide

d, the splitting of f(x) modulo a prime p is

equivalent to

x2 ≡ d(mod p)

having a solution or not. We define the Leg-

endre symbol
(

d
p

)

by

(

d

p

)

=

⎧

⎨

⎩

1 if d is square modulo p

−1 otherwise.

The famous quadratic reciprocity law says that

for two odd primes p and q
(

p

q

)(

q

p

)

= (−1)
p−1
2 ·q−1

2 .
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For almost all p, we will attach to the pair

(Q(
√

d), p) -→
(

d

p

)

.

If we now consider the field Qp(
√

d) in which

Qp is the completion of Q with respect to the

ultra–metric

|xpm|p = p−m,

where p does not divide the rational number

x ∈ Q, then

σp(
√

d) =

(

d

p

)√
d

where σp is the extension of σ to Qp(
√

d). The

automorphism σp will act trivially if and only if

x2 − d splits modulo p.
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Then for almost all p, the symbol
(

d
p

)

defines

a character χp of Q∗
p by

χp(xpm) =

(

d

p

)m

(p ! x).

The correspondence

σp -→ χp

for all p ! d is an example of Artin reciprocity

map. It can be defined for all Galois extensions

L/Q for which Gal(L/Q) is abelian.
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One of the major steps in Langlands program

is to extend this reciprocity to any Galois ex-

tension. Matters will be more complicated.

One will have to consider continuous repre-

sentations of Gal(Q/Q) and attach to them

generalizations of objects already introduced

as Maass forms in L2(Γ\H) or modular forms

of arbitrary weight.

While this has been established for function

fields in many settings, the case of number

fields is wide open.

Reference for reciprocity laws: Jared Wein-

stein, Bulletin of AMS, Vol. 53, Number 1,

2016.
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Conclusion: Two problems are connected through

spectral analysis of modular forms. Their gen-

eralizations, the space of automorphic forms,

will then be the target for resolving these cen-

tral problems in number theory. This is an

important part of the Langlands Program.
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Thank you!
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