MATH 519 QUALIFYING EXAM

FALL 2018

Directions. Answer 8 of the following 10 questions. Begin each question on a fresh sheet of paper. Hand in only the 8 questions you wish to have graded.

1. Let G be a finite group. Denote by Aut(G) the group of all automorphisms of G. Prove that |Aut(G)| = 1 implies $G = \{1\}$ or G isomorphic to \mathbb{Z}_2 .

2. Let G be a group with $N \triangleleft G$. Show that there is no surjective group homomorphism $\varphi: G \to S_4$ such that $|S_4: \varphi(N)| = 8$. Here, $\varphi(N)$ is the image of N under φ .

3. Let G be a group of oder pq, where p, q are primes (not necessarily distinct). Show that G is not simple.

4. Prove or disprove the following statement:

- (a) Let x, y be two elements of finite order in a group. The element xy has also finite order.
- (b) Let H_i be normal subgroups of groups G_i for i = 1, 2. If $H_1 \simeq H_2$ and if $G_1 \simeq G_2$, then $G_1/H_1 \simeq G_2/H_2$.

5. Let G be a finite group, K normal subgroup, and P a Sylow p-subgroup of G. Prove that $P \cap K$ is a Sylow p-subgroup of K.

6. Consider $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$, the quaternion group of order 8. (In Q_8 , $i^2 = j^2 = k^2 = -1$, ij = k, ji = -k, jk = i, kj = -i, ki = j, ik = -j.)

- (a) Find all conjugacy classes and their sizes in Q_8 .
- (b) Find $C_{Q_8}(k)$.

FALL 2018

7. For any prime $p \ge 2$, show that there is always an irreducible polynomial in $\mathbb{Z}_p[x]$ whose degree is 2.

8. Let R be a finite commutative ring with 1. Let $I \subset R$ be a prime ideal. Define I[x] as the ideal of all polynomial in R[x] whose coefficients lie in I, i.e.,

$$I[x] := \{a_0 + a_1x + \dots + a_nx^n : a_i \in I, \ n \in \mathbb{N} \cup \{0\}\}.$$

Show that R[x]/I[x] is an Euclidean domain.

9. Let R be a principal ideal domain. Prove that every proper ideal is a product $P_1P_2 \cdots P_n$ of maximal ideals, which are uniquely determined up to order.

10. Let R be a commutative ring with 1. Let us call an ideal I of R irreducible if it is NOT possible to write $I = I_1 \cap I_2$, where I_1 and I_2 are proper ideals of R properly containing I.

- (a) Let $x \in R$, $x \neq 0$. Show that there is an ideal I_x of R maximal with respect to the property that $x \notin I_x$.
- (b) Show that the ideal I_x from part (a) is irreducible.
- (c) Show that every prime ideal P of R is irreducible.