Math 519 Qualifying Exam

Fall 2019

Directions. Answer 8 of the following 10 questions. Begin each question on a fresh sheet of paper. Hand in only the 8 questions you wish to have graded.

1. Let G be a group of order $1215 = 3^5 \cdot 5$. Show that G is solvable. Recall that a group G is solvable if there is a chain of subgroups

$$\{1\} = G_0 \triangleleft G_1 \triangleleft G_2 \triangleleft \cdots \triangleleft G_s = G$$

such that G_i is normal in G_{i+1} and G_{i+1}/G_i is abelian, i = 0, 1, ..., s-1.

2. Let G be a finite group of order n and let p be a prime number with p|n. For any Sylow p-subgroup P, show that

$$N_G(N_G(N_G(P))) = N_G(P),$$

where $N_G(\star)$ is the normalizer of \star in G.

- 3. Let G be a group of oder $p \cdot q^{p-1}$, where p < q are two distinct odd primes. Show that G has a normal q-subgroup.
- 4. Let $A = \langle a \rangle$ and $B = \langle b|b^3 \rangle$, that is, A and B are cyclic, with A infinite and B of order 3. Let $P = \langle a, b|b^3 \rangle$. Show that there is not a homomorphism of groups $h: A \times B \to P$ that commutes with the maps

$$\begin{aligned} p_1: P \to A & \text{by} & p_1(a) = a \text{ and } p_1(b) = 1_A \\ p_2: P \to B & \text{by} & p_2(b) = b \text{ and } p_2(a) = 1_B \\ \pi_1: A \times B \to A & \text{by} & \pi_1(a) = a \text{ and } \pi_1(b) = 1_A \\ \pi_2: A \times B \to B & \text{by} & \pi_2(b) = b \text{ and } \pi_2(a) = 1_B \end{aligned}$$

- 5. A nontrivial Abelian group A (written additively) is called *divisible* if for each $a \in A$ and each nonzero integer k, there exists an element $x \in A$ such that kx = a.
 - (a) Prove that the additive group of rational numbers, \mathbb{Q} , is divisible.
 - (b) Prove that no finite Abelian group is divisible.
 - (c) Prove that a quotient of a divisible Abelian group by any proper subgroup is divisible.

1

6. A sequence of groups and group homomorphisms

$$N \overset{\alpha}{\to} G \overset{\beta}{\to} Q$$

is said to be exact at G if and only if the image of α is equal to the kernel of β . Let 1 denote the trivial group. A short exact sequence is a sequence of groups and group homomorphisms

$$1 \to N \stackrel{\alpha}{\to} G \stackrel{\beta}{\to} Q \to 1$$

that is exact at N, G, and Q.

(a) Construct homomorphisms α and β so that

$$1 \to \mathbb{Z}/3\mathbb{Z} \stackrel{\alpha}{\to} \mathbb{Z}/6\mathbb{Z} \stackrel{\beta}{\to} \mathbb{Z}/2\mathbb{Z} \to 1$$

is a short exact sequence.

(b) Let S_3 denote the symmetric group on 3 elements, and construct homomorphisms α and β such that

$$1 \to \mathbb{Z}/3\mathbb{Z} \stackrel{\alpha}{\to} S_3 \stackrel{\beta}{\to} \mathbb{Z}/2\mathbb{Z} \to 1$$

is a short exact sequence.

- 7. Prove or disprove the following statement:
 - (1) Let $G = H \rtimes_{\varphi} K$ be a semi-direct product of two groups H, K with an homomorphism $\varphi : K \to Aut(H)$. Then, we have $K \lhd G$ if and only if φ is trivial.
 - (2) Let I, J be ideals of a commutative ring R. If I + J = R, then $IJ = I \cap J$.
- 8. Let R be a commutative ring with 1. Assume that R has only one proper maximal ideal. Show that the set $R \setminus R^{\times}$ is the maximal ideal, where R^{\times} is the set of units of R.
- 9. Let i be the complex number $\sqrt{-1}$.
 - (a) Show that the ring $\mathbb{Z}[i]$ is a principal ideal domain.
 - (b) Show that $\mathbb{Z}[i]$ is a unique factorization domain.
 - (c) What are the units of $\mathbb{Z}[i]$
- 10. Consider the ring $R = \mathbb{C}[X_1, \dots, X_n]$. For any ideal $I \subseteq R$, we set

$$\mathcal{V}(I) = \{(x_1, \dots, x_n) : \forall f \in I \ [f(x_1, \dots, x_n) = 0]\}$$

and for any set $V \subseteq \mathbb{C}^n$ we define

$$\mathcal{I}(V) = \{ f \in R : \forall \bar{x} \in V \mid [f(\bar{x}) = 0] \}.$$

- (a) Show that if $I \subseteq J$, then $\mathcal{V}(J) \subseteq \mathcal{V}(I)$.
- (b) Show that for any $V \subseteq \mathbb{C}^n$, we have $\mathcal{V}(\mathcal{I}(V)) = V$
- (c) Give an example of a maximal ideal I and the set $\mathcal{V}(I)$.
- (d) What conclusion can you draw about $\mathcal{V}(I)$ from the assumption that I is a maximal ideal?

2