MATH 520 QUALIFYING EXAM

Spring, 2005

Directions. Answer 8 of the following 10 questions. Begin each question on a fresh sheet of paper. Hand in only the 8 questions you wish to have graded.

- 1. Let $\alpha = \sqrt{3} + \sqrt[3]{2}$. Show $\mathbb{Q}(\alpha) = \mathbb{Q}(\sqrt{3}, \sqrt[3]{2})$.
- **2.** Let a, b and c be the roots of $x^3 3x + 1$ in \mathbb{C} .
 - (a) Express b and c in terms of a. You may use the discriminant computation

$$(a-b)(b-c)(c-a) = 9.$$

- (b) Show $\mathbb{Q}(a)$ is a normal extension of \mathbb{Q} .
- **3.** Show $x^4 + x + 1$ is irreducible over \mathbb{Z}_7 .
- **4.** Suppose $[F(\alpha): F]$ is odd. Show $F(\alpha^2) = F(\alpha)$.
- **5.** Suppose K is the splitting field of $f(x) \in \mathbb{Q}[x]$ and that $[K : \mathbb{Q}]$ is odd. Show that all of the roots of f(x) are real.
- **6.** Suppose char $(F) \neq 2$ and $K = F(\sqrt{d})$ is a quadratic extension of F. Consider

$$N: K^* \to F^*/F^{*2}$$
 given by $\alpha \mapsto N_{K/F}(\alpha)F^{*2}$.

Show that $ker(N) = F^* \cdot K^{*2}$.

7. Let α be a root of an irreducible polynomial of degree d over \mathbb{Z}_7 . Suppose

$$\alpha^{7^n} = \frac{\alpha + 4}{\alpha + 1}.$$

Prove that d|3n.

- **8.** Suppose there are two finite extensions $F \subset E$, $F(\alpha)$ with E/F Galois and $F(\alpha) \cap E = F$. Let f(x) be the minimal polynomial of α over F. Show that f(x) is irreducible over E.
- **9.** Let x and y be indeterminants. Let p be a prime and set

$$K = \mathbb{Z}_p(x^{1/p}, y^{1/p})$$
 $F = \mathbb{Z}_p(x, y).$

- (a) Show $[K : F] = p^2$.
- (b) Show that $\alpha^p \in F$ for every $\alpha \in K$.
- (c) Show that $K \neq F(\alpha)$ for any α .
- **10.** Determine the splitting field \mathbb{E} of $g(x) = x^p a \in \mathbb{Z}[x]$, where p is a prime and a is not a pth power. Further, determine, $[\mathbb{E} : \mathbb{Q}]$.