Ph. D. Qualifying Examination

For this exam you may use the textbook, N. N. Lebedev, *Special Functions and Their Applications*, as a reference during the exam, but no other outside material may be used.

1. Compute

$$\psi(1/3)$$

2. Show that

$$|\Gamma(iy)|^2 = \frac{\pi}{y \sinh(\pi y)}.$$

3. Compute

$$\int_{0}^{+\infty} \frac{dt}{(1+t)^2 \sqrt{1+1/t}}.$$

4. Define the Gegenbauer polynomials by the generating function

$$\left(1-2xt+t^2\right)^{-\gamma}=\sum_{n=0}^{+\infty}C_n^{\gamma}(x)t^n,$$

where $\gamma > 0, -1 \le x \le 1, |t| < 1$.

- (a) Find the three-term recursion relation satisfied by the $C_n^{\gamma}(x)$.
- (b) Find the differential equation satisfied by the $C_n^{\gamma}(x)$.
- 5. Let $\{L_n^{\alpha}(x)\}$ be the set of Laguerre polynomials. Show that, for $\operatorname{Re}(\alpha), \operatorname{Re}(\gamma) > 0$, we have

$$\int_{0}^{+\infty} x^{\alpha} e^{-\mu x} L_{n}^{\alpha}(x) dx = \frac{\Gamma(n+\alpha+1)}{\mu^{\alpha+1} n!} \left(1 - \frac{1}{\mu}\right)^{n}.$$

6. Show that, if $Re(\mu + \nu) > -1$, then

$$J_{\mu}(z)J_{\nu}(z) = \frac{2}{\pi} \int_{0}^{\pi/2} J_{\mu+\nu}(2z\cos\theta)\cos((\mu-\nu)\theta)d\theta.$$

7. Show that if Re(v) > -1, then

$$\int_{0}^{z} J_{\nu}(t)dt = 2\sum_{n=0}^{+\infty} J_{\nu+2k+1}(z).$$

8. Show that

$$I_{\nu}(z)K_{\nu+1}(z) + I_{\nu+1}(z)K_{\nu}(z) = \frac{1}{z}.$$

(Hint: think Wronskian.)

9. Show that

$$2^{m} \frac{d^{m}}{dz^{m}} (J_{n}(z)) = \sum_{k=0}^{m} {m \choose k} (-1)^{m-k} J_{n+m-2k}(z).$$

10. Show that if n is a nonnegative integer, then

$$Q_n(z) = \frac{1}{2}P_n(z)\log\frac{z+1}{z-1} - f_{n-1}(z),$$

where $P_n(z)$ is the $n\underline{th}$ Legendre polynomial and $f_{n-1}(z)$ is a certain polynomial.

11. Let, for $0 \le k < 1$,

$$K(k) = \int_{0}^{\pi/2} \frac{d\varphi}{\sqrt{1 - k^2 \sin^2 \varphi}}$$

be the elliptic integral of the first kind. Show that

$$P_{-1/2}(\cosh \alpha) = \frac{2}{\pi} \operatorname{sech}(\alpha / 2) K(\tanh(\alpha / 2)).$$