Math 575 Matrix Computations Qualifying Exam

Spring 2011

- 1. Let A be a 4×4 matrix to which we apply the following operations in the indicated order:
 - (a) Subtract 3 times row two from row four.
 - (b) Interchange columns one and three.
 - (c) Delete row four.

Write the result as a product of four matrices. Do <u>not</u> evaluate the resulting expression.

2. Let $v \in \mathbb{R}^m$ be a unit vector, i.e. $||v||_2 = 1$. The Householder transformation is defined as

$$Q = I - 2vv^T$$

- (a) Show that $Q = Q^T = Q^{-1}$.
- (b) Find all the eigenvalues and associated eigenvectors of Q.
- 3. Let $D = \operatorname{diag}(d_1, d_2, \ldots, d_m)$. Show that:

(a)
$$||D||_p = \max_{1 \le i \le m} |d_i|, \ 1 \le p \le \infty$$

(b) $\sup_{x \ne 0} \frac{x^T D x}{x^T x} = \max_{1 \le i \le m} d_i.$

4. Consider the overdetermined linear system $Ax \approx b$, where $A \in \mathbb{R}^{m \times n}$ with m > n and $b \in \mathbb{R}^m$. Suppose that $A = \widehat{Q}\widehat{R}$ is the reduced QR factorization of A. Show that the least squares solution x of $Ax \approx b$ satisfies

$$\widehat{R}x = \widehat{Q}^T b.$$

5. Let $A, Q \in \mathbb{R}^{m \times m}$, where Q is an orthogonal matrix. Show that

$$\kappa_2(QA) = \kappa_2(A),$$

where $\kappa_2(\cdot)$ stands for the condition number of a matrix in the 2-norm.

6. Given

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ -1 & -1 & -1 \\ 0 & 0 & 0 \end{bmatrix},$$

how many singular values of A are equal to zero?

<u>Hint</u>: You do not need to compute the SVD to answer this question.

- 7. Let $A = U\Sigma V^T$ be the SVD of a matrix $A \in \mathbb{R}^{m \times n}$. Assume that rank $(A) = r \leq n$. Prove:
 - (a) $||A||_F^2 = \sigma_1^2 + \sigma_2^2 + \ldots + \sigma_r^2$.
 - (b) $||A||_2 = \sigma_1$.
 - (c) $\kappa_2(A) = \sigma_1/\sigma_n$, provided m = n = r.
 - (d) $|\det A| = \prod_{i=1}^{m} \sigma_i$, assuming that $A \in \mathbb{R}^{m \times m}$.

(e)
$$A = \sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{T}$$
.
(f) $A^{-1} = \sum_{i=1}^{m} \frac{v_{i} u_{i}^{T}}{\sigma_{i}}$, assuming that $A \in \mathbb{R}^{m \times m}$ and A is nonsingular.

- 8. Let $A \in \mathbb{C}^{m \times m}$ be hermitian positive definite and let $X \in \mathbb{C}^{m \times n}$, where $m \geq n$ and $\operatorname{rank}(X) = n$.
 - (a) Prove that the matrix X^*AX is also hermitian positive definite.
 - (b) Let A_n be the *n*th principal submatrix of A, i.e.

$$A_1 = [a_{1,1}], \ A_2 = \begin{bmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{bmatrix},$$

etc. Prove that for every n = 1, 2, ..., m, the matrix A_n is also hermitian positive definite.