Ph.D. Qualifying Examination in Statistics 4:30–8:30 Tuesday, August 28, 2012

1. Let $X_1, ..., X_n$ be independent identically distributed random variables with pdf

$$f(x) = \theta(1+x)^{-(1+\theta)}, \quad x > 0,$$

where $\theta > 0$.

- a) Find a sufficient statistic for θ .
- b) Find a Cramer-Rao lower bound for unbiased estimators of $g(\theta) = \log(\theta)$.
- 2. Let $Y_1, ..., Y_n$ be independent identically distributed (iid) random variables from a distribution with probability density function (pdf)

$$f(y) = \frac{2}{\sigma \sqrt{2\pi}} \frac{1}{y^2} \exp\left(\frac{-1}{2\sigma^2 y^2}\right)$$

where y > 0 and $\sigma > 0$.

- a) Find the maximum likelihood estimator (MLE) of σ^2 .
- b) Find the MLE of σ .
- 3. Let $Y_1, ..., Y_n$ be iid from a one parameter exponential family with pdf or pmf $f(y|\theta)$ with complete sufficient statistic $T(\mathbf{Y}) = \sum_{i=1}^n t(Y_i)$ where $t(Y_i) \sim \theta X$ and X has a known distribution with known mean E(X) and known variance V(X). Let $W_n = cT(\mathbf{Y})$ be an estimator of θ where c is a constant.

a) Find the mean square error (MSE) of W_n as a function of c (and of n, E(X) and V(X)).

b) Find the value of c that minimizes the MSE. Prove that your value is the minimizer.

- c) Find the uniformly minimum variance unbiased estimator (UMVUE) of θ .
- 4. Let $X_1, ..., X_n$ be a random sample from a Poisson distribution with mean θ .
 - a) Show that $T = \sum_{i=1}^{n} X_i$ is complete sufficient statistic for θ .

b) For a > 0, find the uniformly minimum variance unbiased estimator (UMVUE) of $g(\theta) = e^{a\theta}$.

c) Prove the identity:

$$E\left[2^{X_1}|T\right] = \left(1 + \frac{1}{n}\right)^T$$

5. Let $Y_1, ..., Y_n$ be independent identically distributed random variables with pdf

$$f(y) = e^y I(y \ge 0) \frac{1}{\lambda} \exp\left[\frac{-1}{\lambda}(e^y - 1)\right]$$

where y > 0 and $\lambda > 0$.

a) Show $W = e^Y - 1 \sim \frac{\lambda}{2} \chi_2^2$.

b) What is the UMP (uniformly most powerful) level α test for $H_0: \lambda = 2$ versus $H_1: \lambda > 2$?

c) If n = 20 and $\alpha = 0.05$, then find the power $\beta(3.8386)$ of the above UMP test if $\lambda = 3.8386$. Let $P(\chi_d^2 \le \chi_{d,\delta}^2) = \delta$. The tabled values below give $\chi_{d,\delta}^2$.

d					δ			
	0.01	0.05	0.1	0.25	0.75	0.9	0.95	0.99
20	8.260	10.851	12.443	15.452	23.828	28.412	31.410	37.566
30	14.953	18.493	20.599	24.478	34.800	40.256	43.773	50.892
40	22.164	26.509	29.051	33.660	45.616	51.805	55.758	63.691

- 6. Consider independent random variables $X_1, ..., X_n$, where $X_i \sim N(\theta_i, \sigma^2), 1 \le i \le n$, and σ^2 is known.
 - a) Find the most powerful test of

$$H_0: \theta_i = 0, \forall i, \text{ versus } H_1: \theta_i = \theta_{i0}, \forall i,$$

where θ_{i0} are known. Derive (and simplify) the exact critical region for a level α test.

b) Find the likelihood ratio test of

$$H_0: \theta_i = 0, \forall i$$
, versus $H_1: \theta_i \neq 0$, for some *i*.

Derive (and simplify) the exact critical region for a level α test.

c) Find the power of the test in (a), when $\theta_{i0} = n^{-1/3}, \forall i$. What happens to this power expression as $n \to \infty$?