Ph. D. Qualifying Examination in Statistics Tuesday, August 26, 2003

1) Suppose that $X_1, ..., X_n$ are iid normal distribution with mean 0 and variance σ^2 . Consider the following estimators: $T_1 = \frac{1}{2}|X_1 - X_2|$ and $T_2 = \sqrt{\frac{1}{n}\sum_{i=1}^n X_i^2}$.

a) Is T_1 unbiased for σ ? Evaluate the mean square error (MSE) of T_1 .

b) Is T_2 unbiased for σ ? If not, find a suitable multiple of T_2 which is unbiased for σ .

2) Let $X_1, ..., X_n$ be independent identically distributed random variables with pdf (probability density function)

$$f(x) = \frac{1}{\lambda} \exp\left(-\frac{x}{\lambda}\right)$$

where x and λ are both positive. Find the uniformly minimum variance unbiased estimator (UMVUE) of λ^2 .

3) Let $X_1, ..., X_n$ be a random sample from a population with pdf

$$f(x) = \begin{cases} \frac{\theta x^{\theta - 1}}{3^{\theta}} & 0 < x < 3\\ 0 & \text{elsewhere} \end{cases}$$

The method of moments estimator for θ is $T_n = \frac{\overline{X}}{3 - \overline{X}}$.

- a) Find the limiting distribution of $\sqrt{n}(T_n \theta)$ as $n \to \infty$.
- b) Is T_n (asymptotically) efficient? Why?
- c) Find a consistent estimator for θ and show that it is consistent.
- 4) Let X_1, \ldots, X_n be independent identically distributed random variables with pdf

$$f(x) = \frac{1}{\lambda} \exp\left[-(1+\frac{1}{\lambda})\log(x)\right]$$

where $\lambda > 0$ and $x \ge 1$.

- a) Find the maximum likelihood estimator of λ .
- b) What is the maximum likelihood estimator of λ^8 ? Explain.

5) Let $X_1, ..., X_n$ be independent identically distributed random variables from a distribution with pdf

$$f(x) = \frac{x^2 \exp\left(\frac{-x^2}{2\sigma^2}\right)}{\sigma^3 \sqrt{2} \Gamma(3/2)}$$

where $\sigma > 0$ and $x \ge 0$.

a) What is the UMP (uniformly most powerful) level α test for $H_o: \sigma = 1$ vs. $H_1: \sigma = 2$?

b) If possible, find the UMP level α test for $H_o: \sigma = 1$ vs. $H_1: \sigma > 1$.

6) Suppose that $X_1, ..., X_n$ are iid with the Weibull distribution, that is the common pdf is

$$f(x) = \begin{cases} \frac{b}{a} x^{b-1} e^{-\frac{x^b}{a}} & 0 < x \\ 0 & \text{elsewhere} \end{cases}$$

where a is the unknown parameter, but b(>0) is assumed known.

a) Find a minimal sufficient statistic for a

b) Assume n = 10. Use the Chi-Square Table and the minimal sufficient statistic to find a 95% two sided confidence interval for a.