Ph.D. Qualifying Examination in Statistics August, 2006

1. Let $X_n \sim \text{Poisson}(n\lambda)$ where the positive integer n is large and $0 < \lambda$.

a) Find the limiting distribution of
$$\sqrt{n} \left(\frac{X_n}{n} - \lambda\right)$$
.
b) Find the limiting distribution of $\sqrt{n} \left[\sqrt{\frac{X_n}{n}} - \sqrt{\lambda}\right]$

2. Let $X_1, ..., X_n$ be independent identically distributed (iid) random variables with probability density function

$$f(x) = \frac{2}{\sqrt{2\pi\lambda}} e^x \exp\left(\frac{-(e^x - 1)^2}{2\lambda^2}\right)$$

where x > 0 and $\lambda > 0$.

- a) Find the maximum likelihood estimator (MLE) $\hat{\lambda}$ of λ .
- b) Find the MLE of λ^2 .
- 3. Let $Y_1, ..., Y_n$ denote a random sample from a uniform $(\theta, \theta + 1)$ population.
 - a) Find a two-dimensional sufficient statistic for θ .
 - b) Find the method of moments estimator of θ . Name this estimator θ_1 .

c) Find an unbiased estimator of θ based on $Y_{(1)} = \min(Y_1, ..., Y_n)$. Name this estimator $\hat{\theta}_2$.

d) Find the mean square errors of the estimators $\hat{\theta}_1$ and $\hat{\theta}_2$. Which estimator do you choose using the MSE criterion and why?

4. Let $Y_1, ..., Y_n$ be iid random variables with pdf

$$f(y) = \frac{2}{\sqrt{2\pi\lambda}} \frac{1}{y} I_{[0,1]}(y) \exp\left[\frac{-(\log(y))^2}{2\lambda^2}\right]$$

where $\lambda > 0$. Then $[\log(Y_i)]^2 \sim G(1/2, 2\lambda^2) \sim \lambda^2 \chi_1^2$.

- a) Find the uniformly minimum variance estimator (UMVUE) of λ^2 .
- b) Find the information number $I_1(\lambda)$.
- c) Find the Cramér Rao lower bound (CRLB) for estimating $\tau(\lambda) = \lambda^2$.

5. Let $X_1, ..., X_n$ be independent identically distributed random variables from a distribution with pdf

$$f(x) = \frac{2}{\sqrt{2\pi\lambda}} \frac{1}{x} \exp\left[\frac{-(\log(x))^2}{2\lambda^2}\right]$$

where $\lambda > 0$ where and $0 \le x \le 1$.

- a) What is the UMP (uniformly most powerful) level α test for $H_o: \lambda = 1$ vs. $H_1: \lambda = 2$?
- b) If possible, find the UMP level α test for $H_o: \lambda = 1$ vs. $H_1: \lambda > 1$.
- 6. Let $Y_1, ..., Y_n$ denote a random sample from a $N(a\theta, \theta)$ population.
 - a) Find the MLE of θ when a = 1.
 - b) Find the MLE of θ when a is unknown.

c) Find the likelihood ratio test of $H_0: a = 1$ versus $H_1: a \neq 1$ where θ is unknown. Simplify.