
Ph. D. Qualifying Examination in Statistics 
Thursday January 19, 2012 

1. Let 21, XX be independent random variables. The density function of 1X  is  
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The distribution of 2X  is  
pXP == )1( 2 and pXP −=−= 1)1( 2 . 

Compute the moment generating function of 21XXY = . 

2. Let ),,,( 21 nXXX  be a random sample from a population with pdf 
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a) Show that this density function is in the exponential family, and that 
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sufficient for θ . 
b) If )ln( ii XW −= , show that iW  has an exponential distribution with mean θ/1 . 

c) Show that 
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2θ  has a chi-square distribution with 2n degrees of freedom. 

d) Show that 
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e) What is the minimum variance unbiased estimator (MVUE)for θ ? 

3. Let kYYY ,...,, 21  be independent, where kiNY ii ≤≤1),(Poisson~ β . Here β  is unknown, 
and kNNN ,...,, 21  are fixed known constants.  
a) Use the factorization theorem to obtain a sufficient statistic for β . 
b) Find the maximum likelihood estimator (MLE) β̂ of β . 
c) Show that β̂ is unbiased for β , and derive )ˆvar(β . 

d) An alternative unbiased estimator is 
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*β .Find )var( *β . 

e) Which of the two estimators )orˆ( *ββ is preferred? Discuss. 
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4. Let ),,,( 21 nXXX  be a random sample from an exponential distribution with pdf 
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where 0>β . 
a)Find the most powerful level α  test for 00 : ββ =H , against 11 : ββ =H  where 01 ββ > . 
b) Is the above test uniformly most powerful for 00 : ββ =H , against 01 : ββ >H ? Explain.  

5. Let ),,,( 21 nXXX  be a random sample from a Poisson distribution with mean θ . We 
are interested in estimating θθ −=== eXPg )0()( 1 . Consider the following two estimators: 
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1 , and I is an indicator function. 

a) Find the asymptotic distribution of 1,nT  (use delta method). 
b) Find the asymptotic distribution of 2,nT . 
c) Which estimator is more efficient in estimating )(θg  when a large sample size is 
available? Show your argument. 

6. Let ),,,( 21 nXXX  be a random sample from ),( 2σθN , where 0θ  is a specified value of 
θ , and 2σ  is unknown. We are interested in testing  

00 : θθ =H , versus 01 : θθ ≠H . 

Show that the test that rejects 0H  when nStX n /|| 2
2/,10 αθ −>−  is a test of size α , 
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from a t-distribution with (n-1) degrees of freedom.  

Show that the test in part (a) can be derived as a likelihood ratio test. 


