Ph.D. Qualifying Exam in Topology January 2006

Instructions: Do as many of the ten problems below as you can. Please use a separate sheet of paper for each problem. If a problem takes more than one page, number the pages. Do not use the back of a page. Good luck!

- 1. Answer each of the following. (Two points each.)
 - (a) What is the product topology?
 - (b) What is the quotient topology?
 - (c) State the Extreme Value Theorem in its most general form.
 - (d) What is a *limit point*?
 - (e) State the Urysohn Lemma.
- 2. Let \mathcal{T} and \mathcal{T}' be two topologies on a set X with $\mathcal{T} \subset \mathcal{T}'$. Does (X, \mathcal{T}) being connected, imply (X, \mathcal{T}') is? What about the reverse implication? Prove all claims.
- 3. State and prove the Uniform Continuity Theorem.
- 4. We wish to form a torus by gluing the opposite edges of a square region together. Write this out formally using a quotient map.
- 5. Prove the Sequence Lemma: Let X be a topological space. Let $A \subset X$. If there is a sequence of points in A converging to x, then $x \in \overline{A}$. The converse holds if X is a metric space.
- 6. Show that \mathbb{R}^{ω} in the box topology is not metrizable. Hint: exploit the Sequence Lemma.
- 7. Prove the continuous image of a compact space is compact. Give an example showing that the continuous image of a closed set need not be closed.
- 8. State and prove the Lebesgue Number Lemma.
- 9. What is the fundamental group of $S^2 \times S^1$?
- 10. Let B^2 be the closed unit two-dimensional ball. Prove that there is no retraction from B^2 to S^1 .