[50] 1. Evaluate the following integrals.

a)
$$\int (\pi x - 2015) \sin(ex) \, dx$$

$$b) \int \frac{2015x + \pi}{\pi x - x^2} \, dx$$

$$c) \int_0^1 \frac{dx}{\sqrt{1+x^2}}$$

d)
$$\int_0^{\pi/2} \sin^{2\pi+1}(\theta) \cos^3 \theta d\theta$$

e)
$$\int \sqrt{x} \ln x \, dx$$

[20] 2. Evaluate the following improper integrals or conclude that they diverge. Explain your answer in each case.

a)
$$\int_{-\pi}^{0} \frac{dx}{(x+\pi)^3}$$

$$b) \int_{-\infty}^{+\infty} \frac{dx}{1 + (x+2)^2}$$

[20] 3. Find each of the following limits.

a)
$$\lim_{x \to 0^+} (1 + \sin 2x)^{\cot 3x}$$

b) $\lim_{x \to 0} \frac{e^{4x} - 1}{\sin(2x)}$

[10] 4. Find the slope of the tangent line to the curve $x = r + \cos(t)$, $y = r \tan(t) + \sin(t)$ at the point $t = \pi/4$, where r is any real constant.

[10] 5. Find the arclength of the curve x = t, $y = t^{3/2}$ over the interval $0 \le t \le 1$.

20] 6. Find the area of the region that lies inside the curve $r = 3\sin(\theta)$ and outside the cardioid $r = 1 + \sin(\theta)$. (Compute the intersection points first.)

[10] 7. Find the interval of convergence of the power series.

a)
$$\sum_{n=1}^{\infty} \frac{(2015x-1)^n}{(n+2)\pi^n}$$

b) Find the sum of the series $\sum_{n=2}^{\infty} \left(\frac{e}{\pi}\right)^{n-1}$.

[15] 8. Find the Maclaurin series for

a)
$$f(x) = \ln(\pi + x)$$

b)
$$f(x) = \sin(\pi x)$$

[15] 9. Use Maclaurin series to find $\int_0^{.3} \cos(x^2) dx$ to within 10^{-4} .

[30] 10. Determine whether the following series converge absolutely, converge conditionally or diverge. Explain your answer in each case.

a)
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n^e \ln(n^{10})}$$

b)
$$\sum_{n=0}^{\infty} \left(\frac{(-2)^n}{n!} \right)$$

c)
$$\sum_{k=1}^{\infty} \left(\frac{2k+1}{3k-1} \right)^k$$