
MATH 109 – TOPIC 4 ARC LENGTH AND RADIAN MEASURE

Consider a circle of radius r centered at the origin. Then the angle θ , measured in radians, subtends (or "marks off") an arc of length s on the circle. For one complete revolution, which is 2π radians, the corresponding arc length is the circumference of the circle, $2\pi r$. Using proportions, we have

angle	one revolution
arc length –	circumference'
$\frac{\theta}{s}$	$=\frac{2\pi}{2\pi r},$

 $s = r\theta$, where θ is in radians.

The importance of this formula will be seen in Topic 5.

PRACTICE PROBLEMS for Topic 4 – Arc Length and Radian Measure

4.1 If $\theta = \frac{\pi}{2}$ and r = 2, how long is the arc length subtended? Answer

4.2 On a circle whose radius is 3, what angle subtends an arc of length 4?

Answer

Beginning of Topic 109 Study Topics 109 Skills Assessment

or

or

ANSWERS to PRACTICE PROBLEMS (Topic 4 – Arc Length and Radian Measure)

4.1 π units

4.2
$$\frac{4}{3}$$
 radians

Return to Problem