MATH 150 – TOPIC 10 ARC LENGTH AND RADIAN MEASURE

Consider a circle of radius r centered at the origin. Then the angle θ , measured in radians (see Review Topic 8), subtends (or "marks off") an arc of length s on the circle. For one complete revolution, which is 2π radians, the corresponding arc length is the circumference of the circle, $2\pi r$. Using proportions, we have

or

or

angle	one revolution
$\frac{1}{\text{arc length}} =$	circumference,
$\frac{\theta}{s} =$	$=\frac{2\pi}{2\pi r},$

 $s = r\theta$, where θ is in radians.

The importance of this formula will be seen in Review Topic 1.

PRACTICE PROBLEMS for Topic 10 – Arc Length and Radian Measure

10.1 If $\theta = \frac{\pi}{2}$ and r = 2, how long is the arc length subtended?

10.2 On a circle whose radius is 3, what angle subtends an arc of length 4?

ANSWERS to PRACTICE PROBLEMS (Topic 10 – Arc Length and Radian Measure)

10.1 π units 10.2 $\frac{4}{3}$ radians

Beginning of Topic

Skills Assessment