MATH 150 – TOPIC 5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

- I. What is a "log"?
- II. How do we get e?
- III. e^x and $\ln x$ as Functions
- IV. Laws of Logarithms

Practice Problems

I. A log (shorthand for logarithm) is an expression which represents an exponent. Finding the log really means finding the exponent.

Example: The value of $\log_3 9$ is 2 because $3^2 = 9$. The value of $\log_{25} 5$ is $\frac{1}{2}$ because $25^{1/2} = 5$.

Even though you are comfortable with exponential forms, much of calculus is written using log notation.

 $3^4 = 81$ becomes $\log_3 81 = 4$ $10^{-2} = .01$ becomes $\log .01 = -2$ Base 10 logs are called common logs and the '10' is left out of the notation.

In general, $a^x = b$ in log form becomes $x = \log_a b$ where a > 0, b > 0, and $a \neq 1$.

II. How do we get e?

Suppose we evaluate $\left(1+\frac{1}{n}\right)^n$ for increasingly larger n.

n	$\left(1+\frac{1}{n}\right)^n$
1	2.0000
10	2.5937
100	2.7048
1,000	2.7169
1,000,000	2.7182

This irrational number is designated by the letter e. That is, $\left(1+\frac{1}{n}\right)^n \to e$ as $n \to \infty$. When writing a log with base e, we use the ln form (natural log).

NOTE: There are other methods to derive e.

1. Graphs

2. When both functions are plotted on the same axis, do you recognize the symmetry about the line y = x?

This means that e^x and $\ln x$ are inverses [for more discussion on inverse functions, refer to Review Topic 15] and leads to two important properties:

 $e^{\ln x} = x$ for all x > 0. Ex. $e^{\ln \sqrt{2}} = \sqrt{2}$ $\ln e^x = x$ for all real x. Ex. $\ln e^{\pi} = \pi$ IV. Laws of Logarithms. If M and N are positive, b > 0, and $b \neq 1$, then

$$\log_b MN = \log_b M + \log_b N \quad \text{or} \quad \ln MN = \ln M + \ln N$$
$$\log_b \frac{M}{N} = \log_b M - \log_b N \quad \text{or} \quad \ln \frac{M}{N} = \ln M - \ln N$$
$$\log_b (N^k) = k \log_b N \quad \text{or} \quad \ln(N^k) = k \ln N$$

* Don't these look like exponential laws? Why should they?

Here are examples of what these laws can do.

Example: Express $\ln \frac{x^2 + 2}{\sqrt{x(x-1)}}$ in the form involving sums, differences, and multiples of logarithms.

$$\ln \frac{x^2 + 2}{x^{1/2}(x - 1)} = \ln(x^2 + 2) - \ln[x^{1/2}(x - 1)]$$
$$= \ln(x^2 + 2) - [\ln x^{1/2} + \ln(x - 1)]$$
$$= \ln(x^2 + 2) - \frac{1}{2}\ln x - \ln(x - 1).$$

Example: Solve for $t: 3e^{2t} = 10$.

Solution:

$$e^{2t} = \frac{10}{3}$$

 $\ln e^{2t} = \ln \frac{10}{3}$
 $.2t = \ln \frac{10}{3}$
 $t = \frac{\ln \frac{10}{3}}{.2}$ or $t = 5 \ln \frac{10}{3}$

Example: Solve for x: $2xe^{2x} + e^{2x} = 0$ Solution: $e^{2x}(2x+1) = 0$ $x = -\frac{1}{2}$ $(e^{2x} > 0 \text{ for all } x)$

PRACTICE PROBLEMS for Topic 5 – Exponential and Logarithmic Functions

5.1. Find the value of each of the following (no calculator, please).

- a) $\log 1000$ b) $\log .001$ f) $\log_{16} \frac{1}{4}$ g) $\log_{16}(-4)$
- c) $\log_2 16$ h) $\ln 1$
- d) $\ln e^{\sqrt{2}}$ i) $\log_2 10 \log_2 5$
- e) $\log_{16} 4$
- 5.2. Sketch graphs of each of the following. Indicate intercepts and all asymptotes. [Refer to Topic 1 for help on graphing transformations.]
 - a) $f(x) = e^x$ $g(x) = e^{-x}$ $h(x) = e^{-x} - 2$ b) $f(x) = \ln x$ $g(x) = -\ln x$ $h(x) = \ln(-x)$
- 5.3. Use laws of logarithms to write f(x) as an expression involving sums, differences, and multiples of natural logarithms.

a)
$$f(x) = \ln \frac{(x-1)(x+3)^2}{\sqrt{x^2+2}}$$
 b) $f(x) = \ln \frac{(x-1)}{\sqrt[3]{x^2+2}(x+3)^2}$

5.4. a) Simplify: $\ln(x^2e^3)$

- b) Show how $\frac{1}{e^{-x}+1}$ is equivalent to $\frac{e^x}{e^x+1}$.
- 5.5. Solve for x;
 - a) $e^{3x+5} = 100$
 - b) $e^{2\ln x} = x + 2$
 - c) $-3x^2e^{-3x} + 2xe^{-3x} = 0$
- 5.6. The number N of bacteria present in a culture at time t (in hours) obeys the equation $N = 1000e^{.02t}$. How long will it take for the population to double?

ANSWERS to PRACTICE PROBLEMS (Topic 5 – Exponential and Logarithmic Functions)

5.1 a) 3 b)
$$-3$$
 c) 4

d) $\sqrt{2}$ e) $\frac{1}{2}$ f) $-\frac{1}{2}$

g) undefined, $\log_a x$ exists only for x > 0

h) 0 i)
$$\log_2 \frac{10}{5} = \log_2 2 = 1$$

5.2. a)

"HA" means horizontal asymptote. (See Review Topic 6.)

VA: x = 0"VA" means vertical asymptote. (See Review Topic 6.)

5.3. a)
$$\ln(x-1) + 2\ln(x+3) - \frac{1}{2}\ln(x^2+2)$$

b)
$$\ln(x-1) - \frac{1}{3}\ln(x^2+2) - 2\ln(x+3)$$

5.4. a)
$$\ln x^2 + \ln e^3 = \ln x^2 + 3$$
 or $2\ln x + 3$

b)
$$\frac{1}{e^{-x}+1} \cdot \frac{e^x}{e^x} = \frac{e^x}{e^0+e^x} = \frac{e^x}{1+e^x}$$

5.5 a)
$$\ln e^{3x+5} = \ln 100$$
 b) $e^{\ln x^2} = x+2$
 $3x+5 = \ln 100$ $x^2 - x - 2 = 0$
 $x = \frac{1}{3}(\ln 100 - 5)$ $x = 2, x = -1$ But $x = -1$
cannot be a

cannot be a solution. Why? Because $\ln x$ is not defined if x is negative.

c)
$$xe^{-3x}(-3x+2) = 0$$

 $x = 0, x = \frac{2}{3}, (e^{-3x} > 0 \text{ for all } x)$

5.6. $2000 = 1000 e^{.02t}$ $2 = e^{.02t}$ $\ln 2 = .02t$ $\frac{\ln 2}{.02} = t$ Beginning of Topic Skills Assessment