1. Find the exact values of

a) \(\sin \frac{4\pi}{3} \)

b) \(\cot \frac{5\pi}{4} \)

 [3] [3]

 c) \(\tan \left(\arcsin \frac{2}{5} \right) \)

 [5]

 a) \(e^{2x} - e^x - 6 = 0 \)

 b) \(5 \ln(2x - 8) = 4 \)

 [6]

 c) \(x^2 - 4x - 12 > 0 \). Give solution in interval notation.
[12] 3. Suppose \(\sin \theta = \frac{2x}{3} \) for some acute angle \(\theta \). Express in terms of \(x \).

 a) \(\cos \theta \)
 b) \(\sin(2\theta) \)

[12] 4. Solve each equation on the interval \(0 \leq \theta < 2\pi \).

 a) \(\cos \theta = -\frac{1}{2} \)
 b) \(\sin(2\theta) = 0 \)

[7] 5. Find all solutions to \(\cos(2\theta) = \frac{1}{2} \).
6a. Graph over one period. Clearly label each graph pointing out x-intercepts and maximum and minimum points.

\[y = -3\sin(2x) \]

6b) Given \(f(x) = 3\cos(4x - 3) \) state the information:

a) Period:

b) Amplitude:

c) Phase shift.

7) Use the graph of \(y = f(x) \) to answer the following:

a) Give the interval(s) on which \(f(x) \) is increasing

b) Give the coordinates of the relative maxima

c) Give the range in interval notation.

8) Factor completely

a) \(x^4 - 7x^2 - 144 \)

b) \(x^4 + 64x \)
[14] 9. Establish the identity:

\[\text{a)} \quad \frac{1}{1 - \sin x} - \frac{1}{1 + \sin x} = \frac{2 \tan x}{\cos x} \quad \text{b)} \quad \frac{\cos^2 \theta}{1 + \sin \theta} = 1 - \sin \theta \]

\[\text{a)} \quad \frac{-2x}{x^2 + 9x + 18} \quad \text{b)} \quad \frac{3x^2 + 10x - 1}{x^3 + x^2 - 2x} \]
11. Graph \(r = 2 + 2\cos \theta \).

12. Graph \(f(x) = \frac{2x-3}{x+4} \)

 a) State the domain of \(f(x) \)

 b) Find the zero(s)

 c) Find the \(y \)-intercept

 d) Find the horizontal asymptote, if any.

 e) Find the vertical asymptote, if any.

 f) Sketch the graph. Label intercepts and dash in asymptotes.
[20] 13. Compute the value of each of the following limits. In the case that the limit is not a finite number, determine whether it is $+\infty$ or $-\infty$.

a) \[\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 - 4x + 3} \]

b) \[\lim_{x \to \infty} \frac{-2x^2 - 2}{x^2 - 1} \]

c) \[\lim_{x \to 9} \frac{\sqrt{x} - 3}{x - 9} \]

d) \[\lim_{x \to 0} \frac{1}{x + 4} - \frac{1}{4} \]

[7] 14. Suppose \(f(x) = -x^2 + 2x - 3 \).

a) Find \(f(x + h) \).

b) Compute \(\lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \).
15. Put the letter of the corresponding graph in the answer blank:

a) \(f(x) = -2x(x - 1)(x - 2)^2 \) Letter of Graph Choice __________
b) \(f(x) = 2x(x - 1)^2(x - 2) \) Letter of Graph Choice __________
c) \(f(x) = -2x^2(x - 1)(x - 2) \) Letter of Graph Choice __________
[18] 16. Graph (You must label at least 3 points and/or any asymptotes, if applicable). Fill in information.

 a) \(y = -x^2 - 2x + 3 \)

 Vertex:

 Zeros:

 y-intercept:

 b) \(y = -e^x + 3 \)

 y-intercept:

 c) \(y = \ln(x - 4) \)

 Equation of asymptote:

 x-intercept:
[15] 17. Evaluate the following.

\[
\begin{align*}
\text{a)} & \quad \lim_{x \to 3} f(x) \\
\text{b)} & \quad \lim_{x \to 3} f(x) \\
\text{c)} & \quad \lim_{x \to 3} f(x) \\
\text{d)} & \quad \lim_{x \to 0} f(x) \\
\text{e)} & \quad \lim_{x \to 0} f(x)
\end{align*}
\]