## 1. Integrate the following

a) $\int 7 x \ln (2 x) d x$
b) $\int \frac{22 x+14}{8 x^{2}+10 x+3} d x$
c) $\int \tan ^{3}(7 x) \sec ^{3}(7 x) d x^{3}$
d) $\int \frac{\sqrt{49-x^{2}}}{14 x} d x$
e) $\int \sin ^{3}(3 x) \cos ^{3}(3 x) d x$
f) $\int_{0}^{2} 2 x^{2} e^{-x^{3}} d x$
2. Find each limit if it exists.
a) $\lim _{x \rightarrow 0} \frac{e^{2 x}+e^{x}-3 x-2}{e^{5 x}-5 x-1}$
b) $\lim _{x \rightarrow 0^{+}}(\sin (5 x))^{\frac{2}{\ln (2 x)}}$
3. Evaluate each improper integral if it converges, otherwise clearly state that it diverges.
a) $\int_{0}^{\infty} \frac{9}{25+x^{2}} d x$
b) $\int_{4}^{5} \frac{7}{\sqrt[3]{x-4}} d x$
4. State whether the following converge conditionally, converge absolutely or diverge. Show all work and state the names of all tests used.
a) $\sum_{k=2}^{\infty} \frac{4 k}{(2 k+1) \ln (k)}$
b) $\sum_{k=1}^{\infty} \frac{(-1)^{k}(6 k)}{4 k^{2}-1}$
c) $\sum_{n=1}^{\infty} \frac{(-2)^{n} 2 n!}{(n+3)!}$
d) $\sum_{n=1}^{\infty} \frac{(7 n-1)^{n}}{(3 n+2)^{2 n}}$
5. Find the interval and radius of convergence for the given power series. Be sure to check the endpoints.

$$
\sum_{n=1}^{\infty} \frac{(-3)^{n}(4 x+8)^{n}}{\sqrt{2 n+11}}
$$

6. Determine the McLaurin series for the following. Give your answer in summation notation.
a) $\left.f(x)=-8 x^{2} \sin \left(4 x^{3}\right)\right)$
b) $g(x)=\frac{e^{2 x^{3}}}{2 x^{-4}}$
7. Find the Taylor polynomial of order four for $\mathrm{F}(\mathrm{x})=2 \sin (2 \mathrm{x})$ where $\mathrm{a}=-5 \pi / 6$.
8. Evaluate the following integral to the nearest ten-thousandth. Use the appropriate number of terms in your evaluation.

$$
\int_{0}^{0.31} e^{-2 x^{2}} d x
$$

9. Find the equation of the line which is tangent to the given parametric equation where $\mathrm{t}=3$. Give your answer in slope -intercept form.

$$
\mathrm{X}(\mathrm{t})=e^{2 t-6}+2 \mathrm{t}+1 \quad \mathrm{Y}(\mathrm{t})=e^{t-3}+t^{2}-3
$$

10. a. Graph the polar equation $\mathrm{r}=-4 \sin (3 \theta)$.

b. Find the area enclosed in this curve.
c. SET UP ONLY the integral which represents the arc length of this curve.
11. Find the length of the parametric curve from $t=0$ to $t=2$ for

$$
\mathrm{X}(\mathrm{t})=4 \sqrt{2} \mathrm{t}+7 \text { and } \mathrm{Y}(\mathrm{t})=e^{2 t}+2 e^{-2 t}+5
$$

12. Eliminate the parameter and sketch the parametric equation given. Be sure to indicate the direction of travel.

$$
\mathrm{X}(\mathrm{t})=2+3 \sec \mathrm{t} \quad \mathrm{Y}(\mathrm{t})=2 \tan \mathrm{t}+3 \quad \text { where } 0 \leq \mathrm{t} \leq 2 \pi .
$$



