1. Integrate the following
a) $\int 5 x^{2} \ln x d x$
b) $\int \frac{5 x^{2}+6 x+1}{2 x^{3}+x^{2}} d x$
c) $\int \tan ^{3}(5 x) \sec ^{3}(5 x) d x$
d) $\int \frac{\sqrt{x^{2}-25}}{x} d x$
e) $\int \sin ^{2}\left(\frac{x}{4}\right) \cos ^{2}\left(\frac{x}{4}\right) d x$
f) $\int_{0}^{1} x^{2} e^{-x^{3}} d x$
2. Find each limit if it exists.
a) $\lim _{x \rightarrow 0} \frac{e^{2 x}-3 e^{x}+x+2}{e^{4 x}-4 x-1}$
b) $\lim _{x \rightarrow 0^{+}}(\sin (3 x))^{\frac{2}{\ln (4 x)}}$
3. Evaluate each improper integral if it converges, otherwise clearly state that it diverges.
a) $\int_{4}^{\infty} \frac{1}{16+x^{2}} d x$
b) $\int_{1}^{2} \frac{7}{\sqrt[4]{x-1}} d x$
4. State whether the following converge conditionally, converge absolutely or diverge. Show all work and state the names of all tests used.
a) $\sum_{k=2}^{\infty} \frac{7 k}{(k+2) \ln (k)}$
b) $\sum_{k=1}^{\infty} \frac{(-1)^{k}(3 k)}{3 k^{2}-1}$
c) $\sum_{n=1}^{\infty} \frac{(-2)^{n} 3 n!}{(3 n)!}$
d) $\sum_{n=1}^{\infty} \frac{(3 n-1)^{n}}{(2 n+1)^{2 n}}$
5. Find the interval and radius of convergence for the given power series. Be sure to check the endpoints.

$$
\sum_{n=1}^{\infty} \frac{(-5)^{n}(3 x+12)^{n}}{\sqrt{3 n+1}}
$$

6. Determine the McLaurin series for the following. Give your answer in summation notation.
a) $f(x)=-2 x^{2}\left(\cos \left(4 x^{3}\right)\right)$
b) $g(x)=\frac{e^{x^{2}}}{4 x^{7}}$
7. Find the Taylor polynomial of order four for $\mathrm{F}(\mathrm{x})=2 \cos (3 \mathrm{x})$ where $\mathrm{a}=-\pi / 12$.
8. Evaluate the following integral to the nearest ten-thousandth. Use the appropriate number of terms in your evaluation.

$$
\int_{0}^{0.19} e^{-2 x^{2}} d x
$$

9. Find the equation of the line which is tangent to the given parametric equation where $t=2$. Give your answer in slope -intercept form.

$$
\mathrm{X}(\mathrm{t})=e^{3 t-6}+2 \mathrm{t}+1 \quad \mathrm{Y}(\mathrm{t})=e^{t-2}+t^{2}-3
$$

10. a. Graph the polar equation $\mathrm{r}=-4 \cos (2 \theta)$.

b. Find the area enclosed in this curve.
c. SET UP ONLY the integral which represents the arc length of this curve.
11. Find the length of the parametric curve from $t=0$ to $t=2$ for

$$
\mathrm{X}(\mathrm{t})=8 \mathrm{t}+13 \text { and } \mathrm{Y}(\mathrm{t})=2 e^{2 t}+2 e^{-2 t}+5
$$

12. Eliminate the parameter and sketch the parametric equation given. Be sure to indicate the direction of travel.

$$
\mathrm{X}(\mathrm{t})=-2+3 \sin \mathrm{t} \quad \mathrm{Y}(\mathrm{t})=2 \cos \mathrm{t}+1 \quad \text { where } 0 \leq \mathrm{t} \leq 2 \pi .
$$

