Ph.D. Qualifying Exam in MATH 530 (Topology)
August 2023

Instructions: Do as many of the ten problems below as you can. Please use a separate sheet of paper for each problem. If a problem takes more than one page, number the pages. Do not use the back of a page. Good luck!

1. (10 points; 2 points each)
 a) What is a Lindelöf space?
 b) Define local compactness.
 c) Define the compactification of a space.
 d) State the Urysohn Lemma.
 e) What is the quotient topology?

2. (10 points) Prove that the continuous image of a compact space is compact. Give an example showing that the continuous image of a closed set need not be closed.

3. (10 points) Construct an example showing that a quotient space of a Hausdorff space need not be Hausdorff.

4. (10 points) Prove the Sequence Lemma: Let X be a topological space. Let $A \subset X$. If there is a sequence of points in A converging to x, then $x \in \bar{A}$. The converse holds if X is a metric space.

5. (10 points) Show that \mathbb{R}^ω in the box topology is not metrizable. Hint: exploit the Sequence Lemma.

6. (10 points) Prove that a topological space X is locally path connected if and only if for every open set U of X, each component of U is open in X.

7. (10 points) Let X be a compact Hausdorff space. Prove that if X has no isolated points, then X is uncountable.

8. (10 points) Prove that the space \mathbb{R}_l is normal. (Recall \mathbb{R}_l has the topology generated by intervals of the form $[a, b]$.)

9. (10 points) Let D^2 be a closed disk. Show that there is no retraction from D^2 to its boundary.

10. (10 points) a. What is the fundamental group of T^2 with one point deleted? b. What is the fundamental group of T^2 with two points deleted? (Hint: draw the torus as a square with opposite sides identified and then delete two points from the interior.)