Math 519 Qualifying Exam

Spring 2023

Directions. Answer 8 of the following 10 questions. Begin each question on a fresh sheet of paper. Hand in only the 8 questions you wish to have graded.

- 1. Let G be a group. Denote by Aut(G) the group of all automorphisms of G and by Inn(G) its subgroup consisting of all inner automorphisms (i.e., automorphisms of the form $x \mapsto yxy^{-1}$ for some $y \in G$. Consider a map $j: G \to G$ defined by $j(g) = g^{-1}$. Prove that |Inn(G)| = 1 if and only if $j \in Aut(G)$.
- 2. Let G be a group and let H be a subgroup of G. Consider the set $A := \{gH : g \in G\}$ of all left cosets. Show that the map \star from $A \times A \to A$ given by $(aH, bH) \mapsto abH$ is well-defined if and only if $H \triangleleft G$.
- 3. Prove or Disprove that any group group of order $5^2 \cdot 13^2$ is abelian.
- 4. Decide if the given statement is true or false. If true, prove it. If false, give a counterexample.

Let H and K be subgroups of the group G. If $H \triangleleft K$ and $K \triangleleft G$, then $H \triangleleft G$.

- 5. We consider the symmetric group S_5 .
 - (a) Let $\alpha = (12345) \in S_5$. Prove that the centralizer of α in S_5 is equal to the cyclic group generated by α .
 - (b) Prove that the 5-cycles in A_5 form two conjugacy classes.
- 6. Prove that an infinite simple group cannot have a subgroup of finite index.
- 7. Let p, q, r be distinct odd primes. Describe all ring homomorphisms $\phi : \mathbb{Z} \to \mathbb{Z}/pqr\mathbb{Z}$. [Hint: You may describe them in terms of the image, $\phi(1)$.]
- 8. Show that the factor ring $\mathbb{Z}[\sqrt{-2}]/(3+2\sqrt{-2})$ is a field. [Hint: You may use without proof that $\mathbb{Z}[\sqrt{-2}]$ is a Euclidean Domain]

- 9. Decide which of the following ideals are prime and which are maximal.
 - (a) (x, 4) in $\mathbb{Z}[x]$.
 - (b) (x, y) in $\mathbb{Z}[x, y]$.
 - (c) (3x) in $\mathbb{Z}[x]$.
 - (d) (x, y) in $\mathbb{F}_5[x, y]$.

10. Let R be a commutative ring with 1. Let

$$\mathcal{N} = \{ r \in R \mid r^n = 0 \text{ for some } n \in \mathbb{N} \}.$$

Show that \mathcal{N} is contained in the intersection of all prime ideals of R.