In addition to the content included on all the old finals, you will be responsible for the new content from Sec7.1-7.4

Please see below for some sample questions:

- 1. Sketch the region enclosed by the curves, shade the relevant area, set up the integral and compute. $f(x) = x^2 - 2x + 3$, g(x) = 2x
- 2. <u>SET UP, but do not evaluate</u> an integral that represents the volume of the solid generated by revolving the region as shows in the picture bounded by the curve $y = 5x x^2$ and the x-axis about:

- 3. Find the area bounded by the two curves $f(x) = x^2 4$ and g(x) = 2x 1. Sketch the region, shade the relevant area and then find the area of this region.
- 4. <u>SET UP, but do not evaluate</u> an integral that represents the volume of the solid generated by revolving the region as shows in the picture bounded by the curve $y = x^2 4x + 5$, x = 1, x = 4 and the *x*-axis about the *x*-axis.

- 5. Let \mathcal{R} be the region bounded by y = 2x and $y = x^2$ shown at right.
 - a) **<u>SET UP, but do not evaluate</u>** an integral that represents the volume of the solid generated by revolving the region about the *x*-axis.
 - b) **SET UP, but do not evaluate** an integral that represents the volume of the solid generated by revolving the region about the line x = 2.
- 6. Determine the volume of the region bounded by
 - $y = x^2 2x$ and y = x that is rotated about a) x-axis b) y-axis

